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Abstract

For every linear differential operator L in one variable with convergent or formal power
series coefficients we construct a function space F on which L acts such that the equation
Ly = 0 admits a basis of solutions in F . In characteristic zero, this is done by adding to the
ring O of holomorphic functions at 0 an abstract primitive z of 1

x
, say, the logarithm log(x). In

positive characteristic p, the ring of constants consists of p-th powers and more primitives are
required: namely, aside from z1 = z for 1/x, also a primitive z2 of zp−1

1 , and then, iteratively,
a primitive zk+1 of zp−1

k , is needed. The space F consists, in the case of positive characteristic,
of formal power series in x whose coefficients are polynomials in countably many variables zi.

It is then shown in all characteristics that the action of L on F possesses a normal form.
It is given by the initial operator L0 of L: The action of L on F is reduced to the action of L0

by a linear automorphism u of F , say, such that L◦u−1 = L0. As L0 is an Euler operator, the
equation L0y = 0 has the obvious solutions. From these, one obtains a full basis of solutions of
Ly = 0 in F by pull-back with u−1. This gives, in the holomorphic characteristic zero case, a
concise formulation and proof of the theorems of Fuchs and Frobenius. As to positive charac-
teristic, results of Dwork are extended, implications to Grothendieck’s p-curvature conjecture
are discussed, and the construction of the characteristic p exponential function is described.

1 Introduction

Let L = pn∂
n + pn−1∂

n−1 + . . . + p1∂ + p0 ∈ O[∂] be a linear univariate differential operator
with holomorphic or formal power series coefficients pi in O = C{x}, respectively, O = k[[x]], k an
arbitrary field. Write L =

∑n
j=0

∑∞
i=0 cijx

i∂j for its expansion at 0, and denote by L0 the initial
form of L at 0, i.e., the Euler operator

L0 =

∞∑
i−j=τ

cijx
i∂j ,

where τ is the minimal shift i − j occurring in the expansion. The indicial polynomial χ = χL of
L at 0 is defined as the polynomial χ(s) =

∑
i−j=τ cijs

j with sj = s(s− 1) · · · (s− j + 1), and its

roots in C, respectively in an algebraic closure k of k, are the local exponents of L at 0. Clearly,
L0(x

k) = χ(k)xk+τ .

The objective of the present paper is to show that the operator L can be brought, by an automor-
phism u of a suitable function space F on which L acts, into the normal form L0, when considered
as a linear map on F ,

L ◦ u−1 = L0 : F → F .
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In particular, the solutions y(x) of the associated differential equation L0y = 0 in F give rise to
solutions of Ly = 0 via u−1(y(x)). If L0 has the same order n as L - which corresponds to L having
a regular singularity at 0 -, one thus recovers a basis of solutions of Ly = 0.

To formulate the respective normal form theorem with more detail, one has to distinguish the case
of characteristic 0 from the case of positive characteristic p > 0.

Characteristic 0: We will equally consider holomorphic or formal power series coefficients, and
write O for the k-algebra of these, with k = C or a field of zero characteristic. Denote by K the
quotient field of O, consisting of meromorphic functions, respectively formal Laurent series. It is
well known that solutions of Ly = 0 may and most often will involve logarithms. We therefore
extend O with the usual differentiation ∂ = d

dx to the differential ring K[z] with derivation ∂
defined by ∂x = 1 and ∂z = 1

x . Here, the variable z plays the role of log(x) and is an abstract
primitive of 1

x . Accordingly, L ∈ O[∂] induces a linear map on K[z], the extension of L, and again
denoted by L : K[z] → K[z]. If all shifts i − j of L are ≥ 0, as we may and will assume upon
multiplying L with a suitable monomial xr, this map sends O[z] to O[z]. This convention simplifies
the notation.

Denote by Ω ⊆ k a (maximal) set of local exponents of L with integer differences. This makes
sense since k has characteristic 0, and thus Z ⊆ Q ⊆ k. We list the elements of Ω increasingly,

ρ1 < ρ2 < · · · < ρr,

where ρk < ρk+1 stands for ρk+1 − ρk ∈ N>0, and denote by mk ≥ 1 the respective multiplicity of
ρk as a root of χ. Set nk = m1 + · · ·+mk and n0 = 0. Then define the free O-module

FΩ =

r∑
k=1

Oxρk [z]<nk
=

r⊕
k=1

nk−1⊕
i=nk−1

Oxρkzi,

where xρ equals exp(ρ log(x)) if k = C, while, for arbitrary k, it is just a symbol with derivation
rule ∂xρ = ρxρ−1. Any L ∈ O[∂] with non-negative shifts acts naturally on FΩ; we denote again
by L : FΩ → FΩ the induced linear map.

Theorem 1.1 (see Theorem 2.15). Let O be the C-algebra of holomorphic functions at 0, or,
respectively, of formal power series. Let L ∈ O[∂] be a linear differential operator with coefficients
in O and shifts ≥ 0, and let L0 denote its initial form. In the convergent setting, assume that
0 is a regular singularity of L, say ordL0 = ordL. There exists a linear automorphism u of FΩ

transforming the linear map L on FΩ into its initial form L0, i.e., the following diagram commutes:

FΩ

FΩ FΩ

L∼=

u

L0

A suitable automorphism u can be explicitly constructed from L. Varying the sets Ω of local
exponents with integer differences one obtains:

Theorem 1.2 (see Theorem 2.16). Let O, L, Ω and FΩ be as above. Assume that ordL0 = ordL.
Let xρ, xρz, . . . , xρzmρ−1, for ρ of multiplicity mρ varying over the local exponents of L, be the
canonical basis of solutions of L0y = 0 in F =

⊕
Ω FΩ. Then

u−1(xρ), u−1(xρz), . . . , u−1(xρzmρ−1)

form a basis of solutions of Ly = 0 in F .

Replacing z by log(x) one obtains in case O = C{x} the classical theorem of Fuchs and Frobenius.
Note that log(x) may appear in the solutions with powers up to the sum nk = m1 + · · ·+mk and
not just up to the multiplicity mk of ρk.
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Positive Characteristic: Let now k be a field of characteristic p > 0, and let O = k[[x]] denote
the ring of formal power series with quotient field K = k((x)). In this case, several complications
arise: The derivation ∂ on K has C := k((xp)) as field of constants, hence the linear independence
of solutions of a differential equation Ly = 0 has to be taken over this field. As in characteristic
zero we will need an abstract primitive of x−1; it will be again denoted by z, taken as a variable,
and satisfying ∂z = 1

x . Note then that zp will again be a constant, ∂zp = 0. This implies that also
zp−1 has no primitive in O[z]. Now, when solving differential equations in characteristic p, one
realizes that such a primitive is eventually needed: so one writes z1 for z and introduces an extra
variable z2 with

∂z2 =
1

x
· 1

z1
.

Continuing in this way one is led to introduce a countable set of variables z1, z2, . . ., abreviated by
z, and related by the formal differentiation

∂zi =
1

x
· 1

z1 · · · zi−1
.

This formula mimics the differentiation rule for the i-fold composition log(log(. . . (log(x)) . . .) of
the complex logarithm. All this suggests to work over the field

k((x))(z1, z2, . . .) = K(z)

of rational functions in zi with formal Laurent series as coefficients. As it turns out, this field is
still too small to solve differential equations in positive characteristic. One has to take instead the
larger field

k(z1, z2, . . .)((x)) = k(z)((x)).

Here, the coefficients of a monomial xk may be rational functions whose numerators and denomi-
nators have arbitrarily large degree (this is not the case for K(z)). Finally, one has to take care of
monomials xρ where ρ ∈ k is a local exponent of the operator. As ρ lies in an algebraic closure of
k, and thus p · ρ = 0, the prospective module to be considered, namely,

Fρ := xρk(z)((x)),

would not be well defined: for k ∈ N, the product xρ · xk could be equally read as xρ+p · xk−p =
xρ · xk−p, with ambiguity in the second factor. To avoid this nuisance we introduce a further
variable t “playing the role of a new x” and define

Fρ := tρk(z)((x))

together with the derivation ∂t = 1
x t as the relevant module. We will later define an even smaller

subspace, restricting the powers of the variables zi as coefficients of powers of x to obtain a more
precise statement.

Theorem 1.3 (see Theorem 3.16). Let k be a field of positive characteristic p, and set O = k[[x]].
Let L ∈ O[∂] be a linear differential operator with coefficients in O and let L0 denote its initial
form. For every local exponent ρ ∈ k of L, let Fρ = tρk(z1, z2, . . .)((x)). There exists a linear
automorphism u of Fρ transforming the linear map L on Fρ induced by L into its initial form L0,
i.e., such that

L ◦ u−1 = L0 : Fρ → Fρ.

We now pass on to the solutions of the associated differential equation Ly = 0. If L ∈ O[∂] has
initial form L0, even constructing a basis of solutions of the “Euler equation” L0y = 0 is not
obvious in positive characteristic. To do so, one has to specify first the field of constants in

R =
⊕
ρ∈k

Fρ =
⊕
ρ∈k

tρk(z)((x)).
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Proposition 1.4 (see Proposition 3.3). The field of constants of R is

C :=
⊕
ρ∈Fp

tρxp−ρk(zp)((xp)),

where Fp denotes the prime field of k.

We then have

Proposition 1.5 (see Proposition 3.9). Let L0 =
∑

i−j=τ cijx
i∂j be an Euler operator. For any

root ρ of χL0 in k, denote by mρ its multiplicity. A basis of solutions of L0y = 0 over the ring of
constants C in R is given by

yρ,i = tρzi
∗
= tρzi1z

⌊i/p2⌋
2 z

⌊i/p3⌋
3 · · · ,

where i < mρ and i∗ = (i, ⌊i/p⌋, ⌊i/p2⌋, ⌊i/p3⌋, . . .) ∈ Z(N) is a string of integers with finitely many
non-zero entries. In particular, the dimension of the solution space of L0y = 0 in R over the
constants is n = ordL0.

With this result in mind, the solutions of the general equation Ly = 0 go along the same line as in
Theorem 1.2, using now Theorem 1.3 and Proposition 1.5.

Theorem 1.6 (see Theorem 3.17). Let O, L, ρ and Fρ be as in Theorem 1.3. Assume that
ordL0 = ordL. Let tρ, tρz1

∗
, . . . , tρz(mρ−1)∗ , for ρ of multiplicity mρ varying over the local expo-

nents of L, be the canonical basis of solutions of L0y = 0. Then

u−1(tρ), u−1(tρz1
∗
), . . . , u−1(tρz(mρ−1)∗)

form a basis of solutions over C of Ly = 0 in R =
⊕

ρ t
ρk(z)((x)).

Example 1.7. The solution of the exponential differential equation y′ = y in characteristic 3, is
given by

exp3 = 1 + x+ 2x2 + 2x3z1 + x4(1 + 2z1) + x5z1 + 2x6z21 + x7(1 + 2z1 + 2z21) + x8(2 + z21)+

+ x9(2z1 + z31z2) + x10(2 + z1 + 2z21 + z31z2) + . . . ,

see Example 4.1 for other characteristics.

Structure of the paper. Section 2.1 starts with a review of univariate differential operators, the
definition of their initial form, the indicial polynomial and the local exponents. We describe the
solutions of Euler equations and introduce the differentiation of a differential operator with respect
to the exponents (in the sense of Frobenius). Then, in Section 2.2, we construct the function space
F for equations in zero characteristic and then prove the respective normal form theorem, Theorem
2.15. This provides in Section 2.3 the description of a full basis of solutions in case the origin is
a regular singular point, see Theorem 2.16. For irregular singularities, we sketch in Section 2.4
Merkl’s algorithm of how to use the normal form theorem also in this case to obtain all solutions.
The section also includes a brief discussion of the occurrence of apparent singularities and of Gevrey
series in this context.

Chapters 3 and 4 are devoted to positive characteristic. We start with the construction of primi-
tives, the enhanced enlargement of function spaces, and the respective ring of constants (Sections
3.1 and 3.2). These techniques are applied in section 3.3 for solving Euler equations in charac-
teristic p. Section 3.4 contains the normal form theorem in positive characteristic, Theorem 3.16,
together with its proof. This is then applied in section 3.5 to construct the associated solutions
of differential equations with regular singularity (now defined through the order condition on the
coefficients as given by Fuchs’ criterion in characteristic 0), in Theorem 3.17.

With section 4.1 we begin to look at concrete examples as are the exponential function and the
logarithm in characteristic p. In section 4.2 we study the case when only finitely many variables zi
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are needed to solve the equations, and relate this to the nilpotence of the p-curvature as described
by Dwork. Also we ask and answer the question when the differential equation has even polynomial
solutions, thus generalizing a result of Honda.

Section 4.3 compares the two normal form theorems with Grothendieck’s p-curvature conjecture as
well as with Bézivin’s conjecture. The delicacy lies in the fact that the algorithm provided by the
normal form theorem in positive characteristic is not the reduction modulo p of the characteristic
0 algorithm. The difference is subtle, and we aim at highlighting the involved phenomena (some
of them being of purely number theoretic flavor). The article concludes in section 4.4 with the
discussion of the integrality of the solutions, i.e., the question when the solutions of differential
equations defined over Z have integer coefficients.

2 Differential equations in characteristic zero

2.1 Constructions with differential operators

Singular differential equations. Let be given a linear ordinary differential equation

Ly = pn(x)y
(n) + pn−1(x)y

(n−1) + . . .+ p1(x)y
′ + p0(x)y = 0,

where
L = pn∂

n + pn−1∂
n−1 + . . .+ p1∂ + p0 ∈ O[∂]

is a differential operator. Here O denotes denotes the ring of germs of holomorphic functions in one
variable x at a given chosen singular point of L, say, the origin 0, or the ring of polynomials k[x] or
formal power series k[[x]] over an arbitrary field k of any characteristic. Moreover, ∂ = d

dx denotes
the usual derivative with respect to x. Writing L =

∑n
j=0

∑∞
i=0 cijx

i∂j , the operator decomposes
into a sum

L = L0 + L1 + . . .+ Lm + . . .

of homogeneous or Euler operators Lk =
∑

i−j=τk
cijx

i∂j , where the shifts τ0 < τ1 < . . . of the
operators Lk are ordered increasingly and all Lk are assumed to be non-zero. The term L0 of
smallest shift constitutes the initial form of L at 0, and τ := τ0 is called the shift of L at 0. Up to
multiplying L with the monomial x−τ we may assume (as we will do throughout) that L has shift
τ = 0; thus L0 =

∑n
i=0 ciix

i∂i. The point x = 0 is singular for L if at least one quotient pi/pn has
a pole at 0 (otherwise, 0 is called non-singular or ordinary). It is a regular singularity (in the sense
of Fuchs) if L0 has again order n, i.e., if cnn ̸= 0. The indicial polynomial of L at 0 is defined as

χL(s) =

n∑
i=0

ciis
i =

n∑
i=0

ciis(s− 1) · · · (s− i+ 1).

Here, si denotes the falling factorial or Pochhammer symbol. Clearly, χL = χL0
, which we simply

denote by χ0. Its roots ρ in the algebraic closure k of k are the local exponents of L at 0, and
mρ ∈ N will denote their multiplicity.

Remark 2.1. (i) We can rewrite any differential operator in terms of δ := x∂, the Euler derivative.
The base change between xn∂n and δ is given by the Stirling numbers of the second kind Sn,k.
This is readily verified using the recursion relation Sn+1,k = kSn,k + Sn,k−1. This allows one to
read off the indicial polynomial of an operator: If the initial form of an operator L is given by
L0 = φ(δ) for some polynomial φ, then the indicial polynomial of the operator is χL = φ.

(ii) The classical characteristic zero definition of a regular singular point of a differential equation
using the growth of the local solutions cannot be translated to characteristic p. However, the
equivalent characterization by Fuchs using the order of vanishing of the coefficients of the equation
applies.
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We recall some basic facts from differential algebra. If (R, ∂) is a differential ring (or field), a
constant is an element r ∈ R, such that ∂r = 0. The set of constants of R forms a subring (or
subfield). A linear differential equation of order n has at most n linearly independent solutions in
any differential field R over its field of constants. This is a simple corollary of Wronski’s lemma, see
[SP03], p. 9, or [Hon81]. A set of n linearly independent solutions is called a full basis of solutions of
the equation in R. In particular, if L ∈ O[∂] is a differential operator with holomorphic coefficients,
then Ly = 0 can only have n C-linearly independent solutions in O(log(x)).

From now on we stick to characteristic 0 and let O be the ring of germs of holomorphic functions
at 0.

Euler equations. The solutions of Euler equations L0y = 0 are easy to find. They are of the
form

yρ,i = xρ log(x)i,

where ρ ∈ C is a local exponent and i varies between 0 and mρ − 1. Here, xρ = exp(ρ log(x)) and
log(x) may be considered either as a symbol subject to the differentiation rule ∂xρ = ρxρ−1 and
∂ log(x) = 1/x, or as a holomorphic function on Cslit = C \ R≥0 or on arbitrary simply connected
open subsets of C∗ = C \ {0}.
Extensions of differential operators. The consideration of logarithms is best formalized by
introducing a new variable z for log(x) [Hon81], [Mez11]. To this end, equip the polynomial ring
K[z] over the field K = Quot(O) of meromorphic functions at 0 with the C-derivation

∂ : K[z] → K[z],

∂x = ∂x = 1, ∂z = x−1,

∂(xizk) = (iz + k)xi−1zk−1.

This turns K[z] into a differential ring. It carries in addition the usual derivative ∂z with respect
to z. The same definition applies to Oxρ[z] for any ρ ∈ C, taking ∂xρ = ρxρ−1.

Remark 2.2. In K[z] every element has a primitive; it is the smallest extension of K for which this
holds true. Indeed, x−1 has no primitive in K. The primitive of x−1zℓ in K[z] is given by 1

ℓ+1z
ℓ+1,

while the primitive of xkzℓ for k ̸= −1 is given by xk+1p(z), where p is a polynomial of degree ℓ.
Thus we may call K[z] the primitive closure of K.

The j-fold composition ∂ ◦ · · · ◦ ∂ will be denoted by ∂j . For a differential operator L = pn∂
n +

pn−1∂
n−1 + . . . + p1∂ + p0 ∈ O[∂] define its extension as the induced action on K[z], denoted by

the same letter,
L : K[z] → K[z]

If ρ ∈ C is a local exponent of L, we will likewise associate to L the C-linear map

L : Kxρ[z] → Kxρ[z], xρh(x)zi 7→ L(xρh(x)zi),

called again the extension of L to Kxρ[z]. Whenever L has shift τ ≥ 0 – as we will assume in the
sequel – its extension sends Oxρ[z] to Oxρ[z] and thus defines a C-linear map

L : Oxρ[z] → Oxρ[z], xρh(x)zi 7→ L(xρh(x)zi).

The Leibniz rule gives

Lemma 2.3. Let L be an operator. Then, for ρ ∈ C, h ∈ O, and i ≥ 0,

L(xρh(x)zi)|z=log(x) = L(xρh(x) log(x)i),

where on the right hand side L acts via d
dx . In particular, the map Oxρ[z] → Oxρ[log(x)] given by

the evaluation z 7→ log(x) sends solutions of Ly = 0 to solutions of Ly = 0.
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Example 2.4. The equation x2y′′ + 3xy′ + 1 = 0 with Euler operator L0 = x2∂2 + 3x∂ + 1
has indicial polynomial χ0 = ρ2 + 3ρ1 + 1 = (ρ + 1)2 with double root ρ = −1. The solutions
of L0y = 0 are y1 = x−1 and y2 = x−1 log(x). The operator L0 = x2∂2 + 3x∂ + 1 on Ox−1[z]
therefore has, as it should be, solutions x−1 and x−1z. Indeed, L0(x

−1) = L0(x
−1) = 0, whereas

∂(x−1z) = x−2(−z + 1) and

∂2(x−1z) = ∂(x−2(−z + 1)) = −2x−3(−z + 1)− x−3 = x−3(2z − 3)

give
L0(x

−1z) = x−1(2z − 3) + 3x−1(−z + 1) + x−1z = 0.

Function spaces. If L0 is an Euler operator with exponents set Ω ⊆ C and if mρ denotes the
multiplicity of ρ ∈ Ω, the C-vector space

F0 =
∑
ρ∈Ω

Oxρ[z]<mρ

of polynomials in z of degree < mρ and with coefficients in Oxρ is the correct space to look at for
finding the solutions of the extended Euler equation L0y = 0, since these are of the form xρzi, for
ρ ∈ Ω and 0 ≤ i < mρ. The space F0 is, however, in general too small to contain the solutions
of the extension Ly = 0 if Ly = 0 is a general equation with regular singularity and initial form
L0. A suitable enlargement of F0 is necessary. The method how to do this goes back to Fuchs,
Frobenius, and Thomé; it requires some preparation.

Differentiating differential operators. This technique first appears in the works of Frobenius.
If s is another variable, write the j-th derivative of xs = exp(s log(x)) as ∂jxs = sjxs−j . Define
then, for ℓ ≥ 1, the ℓ-th derivative (∂j)(ℓ) of ∂j as

(∂j)(ℓ)xs = (sj)(ℓ)xs−j ,

where (sj)(ℓ) denotes the ℓ-th derivative of sj with respect to s. Clearly, (∂j)(ℓ) = 0 for ℓ > j.
Then, for a differential operator L = pn∂

n + pn−1∂
n−1 + . . .+ p1∂ + p0 of order n, we get its ℓ-th

derivative L(ℓ) for ℓ ≥ 1 as

L(ℓ) = pn · (∂n)(ℓ) + pn−1 · (∂n−1)(ℓ) + . . .+ p1 · (∂)(ℓ).

This is no longer a differential operator; it is just a C-linear map Otρ → Oxρ+τ , where τ is the
shift of L.

The following facts are readily verified, cf. Lemmata 3.6 and 3.7 for similar results in positive
characteristic. Let L always be a differential operator of order n and shift τ ≥ 0. Let ρ ∈ C be
arbitrary.

Lemma 2.5. The extension of L to Oxρ[z] has expansion

L = Lx + L′
x∂z +

1

2!
L′′
x∂

2
z + . . .+

1

n!
L(n)
x ∂n

z ,

where the C-linear maps L
(ℓ)
x act on Oxρ while leaving all zi invariant, and ∂z is the usual differ-

entiation with respect to z.

Lemma 2.6. If L0 is an Euler operator of order n with shift 0, indicial polynomial χ0(s), and
extension L0 to Oxρ[z], then

L0(x
ρzi) = xρ · [χ0(ρ)z

i + χ′
0(ρ)iz

i−1 +
1

2!
χ′′
0(ρ)i

2zi−2 + . . .+
1

n!
χ
(n)
0 (ρ)inzi−n].

Lemma 2.7. The kernel of the extension L0 to F0 =
∑

ρ∈Ω Oxρ[z]<mρ
of an Euler operator L0

with exponents ρ ∈ Ω ⊆ C of multiplicity mρ equals

Ker(L0) =
⊕
ρ∈Ω

mρ−1⊕
i=0

Cxρzi.
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Lemma 2.8. A C-basis of solutions of an Euler equation L0y = 0 is given by

xρ log(x)i,

where ρ ranges over all local exponents of L0 at 0 and 0 ≤ i < mρ, with mρ the multiplicity of ρ.

Example 2.9. (a) For the Euler operator L0 = x2∂2−3x∂+3 from before, with indicial polynomial
χ0(t) = (t+ 1)2 and exponent ρ = −1 of multiplicity mρ = 2, the extension L0 = x2∂2 + 3x∂ + 1
to Ox−1[z] has expansion

L0(x
ρzi) = xρ[(ρ+ 1)2zi + 2(ρ+ 1)izi−1 + 2i(i− 1)zi−2]

and kernel
Ker(L0) = Cx−1 ⊕ Cx−1z.

(b) For the Euler operator L0 = x3∂3−4x2∂2+9x∂−9 with indicial polynomial χ0(t) = (t−1)(t−3)2

and exponents 1 and 3 of multiplicity one and two, respectively, the extension L0 = x3∂3−4x2∂2+
9x∂ − 9 to Ox[z]⊕Ox3[z] has expansion

L0(x
ρzi) = xρ[(ρ− 1)(ρ− 3)2zi + (3ρ− 5)(ρ− 3)izi−1 + (6ρ− 14)i2zi−2 + 6i3zi−3]

and kernel
Ker(L0) = Cx⊕ Cx3 ⊕ Cx3z.

Remark 2.10. In order to apply the perturbation lemma 2.14 below to an operator L acting on the
space F0 =

∑
ρ∈Ω Oxρ[z]<mρ

one has to determine the image of the initial form L0 of L. Write
L = L0 − T . Assuming that L0 has shift 0, it follows that T is an operator with shift > 0, that is,
it increases the order in x of elements of F0. Therefore, it sends F0 to F0x =

∑
ρ∈Ω Oxρ+1[z]<mρ

.
One has no control about the precise image of T : it can be equal to whole F0x but it can also
be much smaller. The perturbation lemma requires in any case the inclusion Im(T ) ⊆ Im(L0)
of images. This would trivially hold if L0 were surjective onto F0x. But this is not the case
in general: it suffices to take L0 = x2∂2 − x∂ with local exponents σ = 0 and ρ = 2, both
of multiplicity one. Then F0 = O + Ox2 = O and L0 = L0. The image of F0 under L0 is
L0(F0) = Cx + Ox3 ⊊ Ox = F0x, with a gap at x2. However, if L = x2∂2 − x∂ − x = L0 − T ,
the operator T = x sends x ∈ F0 to x2 ̸∈ L0(F0). So the perturbation lemma does not apply to
this situation. The way out of this dilemma is a further enlargement of F0 to a carefully chosen
function space F containing F0. This enlargement will be explained in the next section.

2.2 The normal form of differential operators

When trying to lift, for an arbitrary operator L, the solutions xρ log(x)k of L0y = 0 to solutions of
Ly = 0, two obstructions occur. First, ρ might be a multiple root of the indicial polynomial and
logarithms already appear in the solutions of L0y = 0. Second, if ρ is not a maximal exponent of
L modulo Z, that is, if ρ+ k is again an exponent of L for some k > 0, the lifting poses additional
problems since higher powers of logarithms will occur among the solutions. We will approach and
solve both problems simultaneously by using the extensions of operators L as defined above to
appropriately chosen spaces F for which the image of the action of L0 on F equals Fx. In this
situation, the perturbation lemma 2.14 will apply to reduce L : F → F via a linear automorphism
of F to L0.

Enlargement of function spaces. As was done already classically [Fuc66] p. 136 and 157,
[Fuc68], p. 362 and 364, [Tho72], p. 193, [Fro73], p. 221, it is appropriate to partition the set of
exponents of a linear differential operator L into sets Ω ⊆ C of exponents whose differences are
integers and such that no exponent outside Ω has integer difference with an element of Ω. We list
the elements of each Ω increasingly,

ρ1 < ρ2 < · · · < ρr,
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where ρk < ρk+1 stands for ρk+1 − ρk ∈ N>0; denote by mk ≥ 1 the respective multiplicity of ρk
as a root of the indicial polynomial χ0 of L at 0. Set nk = m1 + · · · +mk and n0 = 0. To easen
the notation, we omit in each ρk the reference to the respective set Ω = {ρ1, . . . , ρr}. Instead of
FΩ

0 =
∑r

k=1 Oxρk [z]<mk
we will now allow polynomials in z of larger degree < nk and take the

module

FΩ =

r∑
k=1

Oxρk [z]<nk
=

r⊕
k=1

nk−1⊕
i=nk−1

Oxρkzi =

r−1⊕
k=1

nk−1⊕
i=0

ρk+1−1⊕
σ=ρk

Cxσzi ⊕
nr−1⊕
i=0

Oxρrzi,

equipped with the derivation ∂ from before (see Figure 1). The two different direct sum decompo-
sitions of F will become relevant in a moment. Then set

F =
⊕
Ω

FΩ,

the sum varying over all sets Ω of exponents with integer difference. As each summand
⊕nk−1

i=nk−1
Oxρkzi

of FΩ has rank mk, it follows that F is free of rank n over O.

Example 2.11. We illustrate the construction of the space FΩ with an example. Let

L = x5∂5 − 2x4∂4 − 2x3∂3 + 16x2∂2 − 16x∂ − x.

It has indicial polynomial χ(s) = s2(s − 2)(s − 5)2. Therefore the local exponents are given by
ρ1 = 0, ρ2 = 2 and ρ3 = 5 with multiplicities m1 = 2, m2 = 1 and m3 = 2. All local exponents
differ by integers and we set Ω = {0, 2, 5} as well as n1 = 2, n2 = 3 and n5 = 5. Then the space
FΩ is given by

FΩ = O ⊕Oz ⊕Ox2z2 ⊕Ox5z3 ⊕Ox5z4.

The exponents (k, i) of monomials xkzi in FΩ are depicted in Figure 1.

k

i

· · ·

ρ1 ρ2 ρ3

n1 − 1

n2 − 1

n3 − 1

Figure 1: The sets of exponents (k, i) of monomials xkzi in FΩ; in red monomials in Ker(L0).

Example 2.12. This example will illustrate why local exponents with integer difference have to
be treated in a separate and quite peculiar way. Assume that the Euler operator L0 has just two
local exponents σ and ρ of multiplicities mσ and mρ, respectively, say Ω = {σ, ρ}. If ρ − σ ̸∈ Z,
then

F = Oxσ[z]<mσ ⊕Oxρ[z]<mρ ;

if ρ− σ ∈ N, then

F = Oxσ[z]<mσ
+Oxρ[z]<mσ+mρ

= Oxσ[z]<mσ
⊕Oxρzmσ [z]<mρ

.

The extension L0 of L0 to F has kernel Cxσ[z]<mσ
⊕Cxρ[z]<mρ

in the first case, and Cxσ[z]<mσ
⊕

Cxρzmσ [z]<mρ
in the second case. The respective images of L0 are

Oxσ+1[z]<mσ
⊕Oxρ+1[z]<mρ
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and
Oxσ+1[z]<mσ

⊕Oxρ+1zmσ [z]<mρ
,

so they equal Fx in both cases.

If we would have taken in the second case where ρ− σ ∈ N is integral the space

F = Oxσ[z]<mσ +Oxρ[z]<mρ ,

the image of L0 would have been

ρ−σ−1⊕
k=1

Cxσ+k[z]<mσ
⊕ Cxρ[z]<mσ−mρ

⊕Oxρ+1[z]<max(mρ,mσ) ⊊ Fx,

which is strictly included in Fx. Here Cxρ[z]<mσ−mρ is to be read as 0 for mσ ≤ mρ. Indeed,
xρzmσ−1 ∈ Fx is not in the image of L0. This would cause serious obstructions when trying to see
L on F as a (negligible) perturbation of L0, since the higher order terms of L may produce images
in whole Fx. So the Perturbation Lemma 2.14 below would not apply.

The example suggests to admit in F powers of the logarithm, say, of z, which exceed the respective
multiplicity of the local exponent ρ appearing in the factor xρ. The following lemma gives a precise
answer of how to proceed; see Lemma 3.13 for the corresponding result in characteristic p.

Lemma 2.13. Let L ∈ O[∂] be an Euler operator with shift τ = 0. Denote by Ω = {ρ1, . . . , ρr} a
set of increasingly ordered local exponents ρk of L with integer differences and multiplicities mk.
Set nk = m1 + . . .+mk and F = FΩ =

∑r
k=1 Oxρk [z]<nk

.

(a) The induced map L : F → F has image Im(L) = Fx =

r∑
k=1

Oxρk+1[z]<nk
.

(b) Its kernel Ker(L) =
⊕r

k=1 Cxρk [z]<mk
(cf. Lemma 2.7) has direct complement

H =

r⊕
k=2

nk−1⊕
i=mk

Cxρkzi ⊕
r−1⊕
k=1

ρk+1−ρk−1⊕
e=1

nk−1⊕
i=0

Cxρk+ezi ⊕
nr−1⊕
i=0

Oxρr+1zi,

in F . Thus the restriction L|H defines a linear isomorphism between H and Fx.

Proof. (a) We show first that L sends F into Fx. Recall from Lemma 2.6 that

L(xρzi) = xρ · [χ(ρ)zi + χ′(ρ)izi−1 +
1

2!
χ′′(ρ)i2zi−2 + . . .+

1

n!
χ(n)(ρ)inzi−n].

Therefore, as χ(ℓ)(ρk) = 0 for 0 ≤ ℓ < mk, and using that nk − mk = nk−1 for k ≥ 2, it follows
that L sends F into

r∑
k=1

Oxρk [z]<nk−mk
=

r∑
k=2

Oxρk [z]<nk−1
⊆

r∑
k=2

Oxρk−1+1[z]<nk−1
⊆ Fx.

Here, we use that ρk − ρk−1 ≥ 1. This proves L(F) ⊆ Fx.

For the inverse inclusion L(F) ⊇ Fx it suffices to check that all monomials xσzi ∈ Fx lie in the
image, where σ = ρk + e for some k = 1, . . . , r and e ≥ 1, and where i < nk. We distinguish two
cases.

(i) If σ ̸∈ Ω, proceed by induction on i. Let i = 0. By Lemma 2.5,

L(xσ) = Lx(x
σ) +

n∑
j=1

1

j!
L(j)
x ∂j

z(x
σ) = Lx(x

σ) = χ(σ)xσ ̸= 0,
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since σ is not a root of χ. So xσ ∈ L(F). Let now i > 0. Lemmata 2.5 and 2.6 yield

L(xσzi) = Lx(x
σzi) +

n∑
j=1

1

j!
L(j)
x ∂j

z(x
σzi) = χ(σ)xσzi + χ(j)(σ)xσ

n∑
j=1

ij

j!
zi−j .

By the inductive hypothesis and using again that χ(σ) ̸= 0 we end up with xσzi ∈ L(F).

(ii) If σ ∈ Ω, write σ = ρk for some 1 ≤ k ≤ r. As xσzi = xρkzi ∈ Fx and ρ1 < ρ2 < · · · < ρr, we
know that k ≥ 2 and

xρkzi ̸∈ x ·
r∑

ℓ=k

Oxρℓ [z]<nℓ
.

Hence

xρkzi ∈ x ·
k−1∑
ℓ=1

Oxρℓ [z]<nℓ
.

This implies in particular that 0 ≤ i < nk−1, which will be used later on. We proceed by induction
on i. Let i = 0. By Lemma 2.5,

L(xρkzmk) =

mk−1∑
j=0

1

j!
L(j)
x ∂j

z(x
ρkzmk) +

1

mk!
L(mk)
x ∂mk

z (xρkzmk) +

n∑
j=mk+1

1

j!
L(j)
x ∂j

z(x
ρkzmk)

=

mk−1∑
j=0

(mk)
j

j!
χ(j)(ρk)x

ρkzmk−j + χ(mk)(ρk)x
ρk

= χ(mk)(ρk)x
ρk .

Here, the sum in the first summand in the last but one line is 0 since ρk is a root of χ of multiplicity
mk, and for the same reason, the second summand χ(mk)(ρk)x

ρk is non-zero. So xσ = xρk ∈ L(F).
Let now i > 0 and consider xσzi = xρkzi ∈ Fx. We will use that i < nk−1 as observed above.
Namely, this implies that mk + i < mk + nk−1 = nk, so that xρkzmk+i is an element of F . Let us
apply L to it. Similarly as in the case i = 0 we get

L(xρkzmk+i) =

mk−1∑
j=0

1

j!
L(j)
x ∂j

z(x
ρkzmk+i) +

1

mk!
L(mk)
x ∂mk

z (xρkzmk+i) +

+

n∑
j=mk+1

1

j!
L(j)
x ∂j

z(x
ρkzmk+i)

=
(mk + i)mk

mk!
χ(mk)(ρk)x

ρkzi +

n∑
j=mk+1

(mk + i)j

j!
χ(j)(ρk)x

ρkzmk+i−j .

The sum appearing in the second summand of the last line belongs to L(F) by the induction
hypothesis since mk + i − j < i. As χ(mk)(ρk) ̸= 0, we end up with xσzi = xρkzi ∈ L(F). This
proves the inverse inclusion L(F) ⊇ Fx and hence assertion (a).

(b) From the shape of F and Ker(L) as depicted in Figure 1 one sees that H is a direct complement
of Ker(L) in F . Hence L|H is automatically injective and L(F) = L(H) = Fx. □

Here is the result from functional analysis required for the proof of the normal form theorems in
characteristic 0 and p.

Lemma 2.14 (Perturbation Lemma). If ℓ : F → G is a continuous linear map between complete
metric vector spaces which decomposes into ℓ = ℓ0− t with Im(t) ⊆ Im(ℓ0) and satisfies |s(t(f))| ≤
C · |f |, 0 < C < 1, for a right inverse s : Im(ℓ0) → F of ℓ0 : F → Im(ℓ0) and all f ∈ F , then
u = IdF − st is a continuous linear automorphism of F which transforms ℓ into ℓ0 via ℓu−1 = ℓ0.
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Proof. The prospective inverse of u is v =
∑∞

k=0(st)
k. It is well defined and continuous because

of the estimate for st(f) and the completeness of F . Hence u is an automorphism of F . From
ℓ0s = IdIm(ℓ0) it follows that ℓ0sℓ0 = ℓ0. From Im(t) ⊆ Im(ℓ0) one gets that the compositions st
and sℓ are well defined and that ℓ0sℓ = ℓ holds. Then

ℓ0u = ℓ0(IdF − st)

= ℓ0(IdF − s(ℓ0 − ℓ))

= ℓ0(IdF − sℓ0 + sℓ)

= ℓ0 − ℓ0sℓ0 + ℓ0sℓ

= ℓ0sℓ

= ℓ,

as required. This proves the result. □

Theorem 2.15 (Normal form theorem in characteristic 0). Let L ∈ O[∂] be a linear differ-
ential operator with holomorphic coefficients at 0, initial form L0 and shift τ = 0. Denote by
Ω = {ρ1, . . . , ρr} a set of increasingly ordered local exponents ρk of L with integer differences and

multiplicities mk. Set nk = m1 + . . .+mk and F = FΩ =

r∑
k=1

Oxρk [z]<nk
. Let L,L0 act on F via

∂x = 1 and ∂z = x−1 as above. Assume that L has a regular singularity at 0.

(a) The composition of the inverse (L0|H)−1 : Fx → H of L0|H with the inclusion H ⊆ F defines
a right inverse S0 : Fx → F of L0, again denoted by (L0|H)−1. Let T : F → Fx be the extension
of T = L0 − L to F . The map

u = IdF − S0 ◦ T : F → F

is a linear automorphism of F , with inverse v = u−1 =

∞∑
k=0

(S ◦ T )k : F → F .

(b) The automorphism v of F transforms L into L0,

L ◦ v = L0.

(c) If 0 is an arbitrary (i.e., regular or irregular) singularity of L, statements (a) and (b) hold

true with O replaced by the ring Ô of formal power series over C or over an arbitrary algebraically
closed field K of characteristic 0.

Proof. Note first that u is well defined since the map T increases the order of series and thus sends
F into Fx.

Once we show that |S0(T (f))| ≤ C|f | holds for some 0 < C < 1 and all f ∈ F , the perturbation
lemma 2.14 implies that u = IdF − S0 ◦ T is a linear automorphism of F with L ◦ u−1 = L0,
proving assertions (a) to (c) of the theorem. The proof of the estimate is split into two parts, first
for formal power series and then for convergent ones, and uses a different metric in each case.

(i) Formal case: Denote by Ô = K[[x]] the formal power series ring over an arbitrary field K of
characteristic 0, equipped with the metric d(f, g) = 2−ord0(f−g), where ord0 denotes the order

of vanishing at 0. Let F̂ denote the induced Ô-modules F̂ = F ⊗K Ô and write again L for the
extension L̂ to F̂ . As T increases the order of series in Ô, while L0 and S0 do not decrease the order,
it follows that also S0 ◦ T increases the order. It thus satisfies the inequality |S0(T (f))| ≤ C · |f |
from the beginning, for some 0 < C < 1, having set |f | = d(f, 0) = 2−ordf . Therefore the von
Neumann series

v =

∞∑
j=0

(S0 ◦ T )j
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defines a C-linear map v : F̂ → F̂ . Then it is clear that v = u−1 = (IdF̂ − S ◦ T )−1. So u and v
are automorphisms, and L ◦ v = L0 by the perturbation lemma. This proves assertion (c) as well
as the formal version of (a).

(ii) Convergent case: To prove the same thing inside O, denote by Os the subring of germs of holo-
morphic functions h such that |h|s < ∞. Here, s > 0 and |∑∞

k=0 akx
k|s :=

∑∞
k=0 |ak|sk. It is well

known that the rings Os are Banach spaces, and that O =
⋃

s>0 Os [GR71]. For s > 0 sufficiently
small, u restricts to a linear map us on the induced Banach space Fs = (

∑r
k=1 Oxρk [z]<nk

)
s
. For

the convergence of vs it therefore suffices to prove that ||S0 ◦ T ||s < 1, where || − ||s denotes the
operator norm of bounded linear maps Fs → Fs. Once this is proven, vs = u−1

s holds as before
and shows that us and hence also u are linear isomorphisms. This argument provides a compact
reformulation of Frobenius’ proof for the convergence of solutions [Fro73], p. 218.

The inequality ||S0 ◦ T ||s < 1 is equivalent to the existence of a constant 0 < C < 1 such that

|S0(T (x
ρh(x)zi))|s ≤ C · |xρh(x)zi|s

for all xρh(x)zi ∈ Fs. This will imply in particular that (S0 ◦ T )(Fs) ⊆ Fs.

We will treat the case where ρ is a maximal local exponent of L modulo Z and a simple root of
χ0. In this case, no extensions of operators are required, and we can work directly with L, S and
T and F = Oxρ. For non-maximal exponents there occur notational complications which present,
however, no substantially new difficulty. So we shall omit the general case. For h =

∑∞
k=0 akx

k ∈ O
and writing L =

∑n
j=0 pj(x)∂

j with pj =
∑∞

i=0 cijx
i we have

T (xρh) = −
∑

i−j>0

∞∑
k=0

(ρ+ k)j cijakx
ρ+k+i−j ,

and, recalling that L0 is assumed to have shift 0,

S(T (xρh)) = −
∑

i−j>0

∞∑
k=0

(ρ+ k)j

χL(ρ+ k + i− j)
cijakx

ρ+k+i−j .

As i− j > 0, k ≥ 0, and ρ is maximal, no ρ+ k + i− j appearing in the denominator is a root of
χL. Hence the ratio

(ρ+ k)j

χL(ρ+ k + i− j)
=

(ρ+ k)j∑n
ℓ=0 cℓ,ℓ(ρ+ k + i− j)ℓ

is well defined. But cn,n ̸= 0 since 0 is a regular singularity of L, and hence (ρ+k+ i− j)n appears
in the denominator with non-zero coefficient. As j ≤ n this ensures that the ratio remains bounded
in absolute value, say ≤ c, as k tends to ∞. Taking norms on both sides of the above expression
for S(T (xρh)) yields, for s ≤ 1 and h ∈ Os, the estimate

|S(T (xρh))|s ≤ c
∑

i−j>0

∞∑
k=0

|cij ||ak|sρ+k+i−j = c
∑

i−j>0

|cij |si−j
∞∑
k=0

|ak|sρ+k

But by assumption, pj =
∑∞

i=0 cijx
i ∈ Os for all 0 < s ≤ s0 and all j = 0, . . . , n. This implies in

particular
∑∞

i>j cijx
i ∈ Os and then, after division by xj+1 and since i > j, that

∞∑
i>j

cijx
i−(j+1) ∈ Os.

We get for all s ≤ r that ∑
i−j>0

|cij |si−j = s ·
∑

i−j>0

|cij |si−(j+1) ≤ c′s
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for some c′ > 0 independent of s. This inequality allows us to bound |S(T (xρh))|s from above by

|S(T (xρh))|s ≤ cc′s

∞∑
k=0

|ak|sρ+k = cc′s|xρh|s.

Take now s0 > 0 sufficiently small, say s0 ≤ min(1, r) and s0 < 1
cc′ , and get a constant 0 < C < 1

such that for 0 < s ≤ s0 one has

|S(T (xρh))|s ≤ C · |xρh|s.
This establishes ||S ◦ T ||s < 1 on Fs for 0 < s ≤ s0. By the Perturbation Lemma 2.14, us =
IdFs

− S ◦ T is an automorphism of Fs with inverse vs =
∑

k(S ◦ T )k. This completes the proof
of the theorem. □

2.3 Solutions of regular singular equations

As a first consequence of the normal form theorem 2.15 we recover the classical theorem of Fuchs
from 1866 and 1868 about the local solutions of differential equations at regular singular points
[Fuc66], [Fuc68]. The statement was reorganized and further detailed by Thomé and Frobenius in
a series of papers between 1872 and 1875 [Tho72], [Tho73a], [Tho73b], [Fro73], [Fro75]. See also
[Fab85] formula (9), p. 19.

Theorem 2.16 (Local solutions in characteristic 0). Let L ∈ O[∂] be a linear differential operator
with holomorphic coefficients and regular singularity at 0. For each set Ω of local exponents of L
with integer differences, let uΩ : FΩ → FΩ be the automorphism of assertion (a) of the normal
form theorem.

(a) Varying Ω, a C-basis of local solutions of Ly = 0 at 0 is given by

yρ,i(x) = u−1
Ω (xρzi)|z=log(x),

for ρ ∈ Ω a local exponent of L of multiplicity mρ, and 0 ≤ i < mρ.

(b) Order the exponents in a chosen set Ω as ρ1 < . . . < ρr and write mk for mρk
. Set nk =

m1 + . . .+mk. Each solution related to Ω is of the form, for 1 ≤ k ≤ r and 0 ≤ i < mk,

yρk,i(x) = xρk [fk,i + . . .+ fk,0 log(x)
i] +

r∑
ℓ=k+1

xρℓ

nℓ−1∑
j=nℓ−1

hk,i,j(x) log(x)
j ,

with holomorphic fk,i and hk,i,j in O, where fk,0 has non-zero constant term.

Proof. Let Ω be a set of local exponents of L at 0 with integer differences and consider the space
FΩ =

∑r
k=1 Oxρk [z]<nk

as in the statement of the normal form theorem. Extend L and L0

to F =
⊕

Ω FΩ. By Lemma 2.7, a C-basis of solutions of L0 is given by the monomials xρzi,
0 ≤ i ≤ mρ − 1, where ρ is a local exponent of multiplicity mρ. By assertion (d) of the normal
form theorem and since L and L0 have the same order n, the pull-backs u−1(xρzi) form a C-basis
of solutions of Ly = 0. Now Lemma 2.3 gives the result. □

Remark 2.17. The coefficient functions fk,i and hρ,i,j ∈ O of the solutions in assertion (b) of the
theorem are related to each other. For instance, if ρ is a maximal exponent in Ω of multiplicity
mρ, then

yρ,0 = xρ · g0
yρ,1 = xρ · [g1 + g0 log(x)]

. . .

yρ,mρ−1 = xρ · [gmρ−1 + gmρ−2 log(x) + . . .+ g1 log(x)
mρ−2 + g0 log(x)

mρ−1],

with holomorphic g0, . . . , gmρ−1, where g0 has non-zero constant term.
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Example 2.18. (i) If L has exactly two exponents σ and ρ, with ρ−σ ∈ N>0 and of multiplicities
mσ and mρ, respectively, we get accordingly

F = xσ[O ⊕ · · · ⊕ Ozmσ−1] + xρ[O ⊕ · · · ⊕ Ozmσ+mρ−1].

which we rewrite as

F = xσ[O ⊕ · · · ⊕ Ozmσ−1]⊕ xρ[Ozmσ ⊕ · · · ⊕ Ozmσ+mρ−1].

A basis of solutions of Ly = 0 are O-linear combinations

yσ,0 = xσ · h0 + xρg0 log(x)
mσ

yσ,1 = xσ · [h1 + h0 log(x)] + xρ log(x)mσ [g1 + g0 log(x)]

. . .

yσ,mσ−1 = xσ · [hmσ−1 + hmσ−2 log(x) + · · ·+ h1 log(x)
mσ−2 + h0 log(x)

mσ−1] +

+ xρ log(x)mσ · [gmρ−1 + · · ·+ g0 log(x)
mρ−1]

yρ,0 = xρ · f0
yρ,1 = xρ · [f1 + f0 log(x)]

. . .

yρ,mρ−1 = xρ · [fmρ−1 + fmρ−2 log(x) + . . .+ f1 log(x)
mρ−2 + f0 log(x)

mρ−1]

with holomorphic f0, . . . , fmρ−1, g0, . . . , gmρ−1, h0, . . . , hmσ−1.

(ii) The function ex log(x) satisfies the differential equation Ly = 0 for

L = x2∂2 + (1− 2x)x∂ + x(x− 1).

A basis of solutions is completed by ex. The initial form of L is

L0 = x2∂2 + x∂.

Consequently, the only local exponent of L is 0 with multiplicity 2. The basis of solution is, as
expected, contained in

O ⊕Oz.

2.4 Applications in characteristic zero

Irregular singularities. Whenever the point 0 is an irregular singularity of a differential operator
L ∈ O[∂] with holomorphic coefficients, i.e., when n0 = ordL0 < ordL = n, Theorem 2.16 does
not provide a basis of solutions of Ly = 0, but only n0 linearly independent solutions thereof. It
is well known that the solutions which are missing for a full basis are more complicated and may
have essential singularities [Fab85]. More specifically, they are of the form

y(x) = exp(q(x)) · xρ ·
[
h0(x) + h1(x) log(x) + . . .+ hk(x) log

k(x)
]
,

where q ∈ C(x) is a rational function, ρ ∈ C a local exponent of L, and hi holomorphic [Sal19],
Thm. 3, [Inc44], Chap. XVII, p. 417. Actually, one can even take for q a Laurent polynomial

q(x) =
∑

r∈Q>0

crx
−r,

with cr ∈ C, almost all cr = 0. It suffices to take here r > 0 since summands with non-negative
exponents produce holomorphic factors in y(x). In [Mer22], Nicholas Merkl describes an algorithm
how to construct these solutions by reducing the differential equation Ly = 0 to various differential
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equations L̃y = 0, all with regular singularity at 0, to apply then to these new equations the normal
form theorem in characteristic 0, Theorem 2.15, to obtain their respective solutions as in 2.16. It
then suffices to pull back these solutions to the original equation via the inverse conjugations.
Doing this for all induced equations L̃y = 0, one eventually obtains a basis of solutions of Ly = 0.

This shows that the normal form theorem 2.15 is applicable to all linear differential equations
with holomorphic coefficients to construct their solutions. In the irregular case, there is also a
method to find the solutions using the Newton polygon of L: it is similar in substance, though
more computational, see [SP03], section 3.3, p. 90.

We briefly sketch Merkl’s algorithm: Let be given an operator L ∈ O[∂] of order n. Denote by
δ = x∂ the basic Euler operator, and define, for r ∈ Q≥0 a positive rational number, the weighted
operator

δr = xrδ.

Here, xr is considered either as a symbol or as a Puiseux monomial with (xr)′ = rxr−1. Writing
r = e/d with e, d ∈ N, we may then expand formally L as a linear combination

L =

n∑
j=0

∞∑
i=0

cijx
i/dδjr ,

with coefficients cijx
i/d. For each j, let i = ij ∈ N be minimal with cij ̸= 0 (we suppress here the

reference to r). Then define the weighted initial form L0,r and the weighted indicial polynomial χr

of L with respect to r as

L0,r =

n∑
j=0

cijjδ
j
r ∈ C[δr],

χr =

n∑
j=0

cijjs
j ∈ C[s].

For r = 0 we just get the classical initial form L0 = L0,0 and its indicial polynomial χ = χ0 defined
earlier. Note that for generic r, the polynomial χr will be a monomial and hence have the unique
root 0 in C. The interesting values of r occur when χr is at least a binomial and thus also has
roots ̸= 0 in C. These values of r correspond to the slopes of the Newton polygon of L and are
also known as dicritical values or weights [SP03] section 3.3, p. 90. The dicritical weighted local
exponents of L with respect to r are defined as the non-zero roots of χr in C. We set

Ωr = {ρ ∈ C, χr(ρ) = 0},
Ω∗

r = Ωr \ {0} = {ρ ∈ C∗, χr(ρ) = 0}.

Here, Ω∗
r is non-empty if and only if r is dicritical for L. Merkl then proves

Lemma 2.19. The number of classical local exponents of L plus the number of dicritical weighted
local exponents of L with respect to rational weights r > 0, both counted with their multiplicities,
equals n, the order of L.

In the case of a regular singularity, all local exponents are classical and no weighted local exponents
appear. So we will assume henceforth that there is at least one weighted local exponent ρ, for some
dicritical r ∈ Q∗. Choose and then fix such a pair.

After these preparations, the first step in the algorithm is to replace in the differential equation
Ly = 0 the variable y by

exp(−ρ

r
x−r)y = e−

ρ
r x

−r

y.
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This substitution corresponds to a conjugation of L with the multiplication operator given by the
indicated exponential function. If we write

L =

n∑
j=0

aj(x)δ
j
r

the conjugated operator is, see [Mer22] p. 13., given as

L̃ =

n∑
j=0

 n∑
k=j

(
k

j

)
ρk−jaj(x)

 δjr .

It is then shown that the conjugation associated to a weighted local exponent ρ of weight r > 0
translates the weighted local exponents of L by ρ, i.e., L̃ has weighted local exponents σ − ρ with
respect to r [Mer22], Prop. 3.10, p. 29. In particular, the original ρ becomes 0 and is thus no longer

dicritical for L̃. Iterating this process of conjugation one arrives at a differential equation which
has no dicritical weights at all. This is equivalent to saying that the final differential operator L∗

has a regular singularity at 0. Thus the normal form theorem 2.15 applies to L∗ and produces
as many linearly independent solutions of L∗y = 0 as its order indicates, using Theorem 2.16.
Tracing back the conjugations of L and varying the algorithm over all dicritical weights r and their
weighted local exponents ρ, one ends up with a full basis of solutions of the original differential
equation. This reproves in a constructive and systematic way Fabry’s theorem about the existence
and description of the solutions of irregular singular differential equations.

Example 2.20. The divergent series y(x) =
∑∞

k=0 k!x
k+1 satisfies the second order equation

Ly = x3y′′ + (x2 − x)y′ + y = 0.

The initial form of L at 0 is given by the first order operator L0 = −x∂+1. Hence 0 is an irregular
singularity of L. The function z(x) = exp(− 1

x ) is a second solution of Ly = 0; it is no longer a
formal power series.

Apparent singularities. The formulas for the solutions of Ly = 0 are somewhat complicated
whenever the sets Ω of local exponents are not single valued. But if Ω = {ρ} has just one element
ρ, i.e., no other local exponent of L is congruent to ρ modulo Z, and if ρ has multiplicity mρ, the
respective solutions are simpler, of the form, for 0 ≤ i < mρ,

yρ,i(x) = xρ[fi + . . .+ fi log(x)
i].

If some local exponents have multiplicity ≥ 2 logarithms are forced to appear. If all local exponents
are simple roots of the indicial polynomial, it may happen that no logarithms appear in the
solutions. This situation is known as the presence of apparent singularities.

Theorem 2.21 (Apparent singularities). Let L ∈ O[∂] be a differential operator with holomorphic
coefficients and regular singularity at 0. Assume that all local exponents are integers and simple
roots of the indicial polynomial of L at 0, and write L = L0 − T with initial form L0 of L. If
Im(T ) ⊆ Im(L0) in O, the local solutions of Ly = 0 at 0 are holomomorphic functions.

Proof. This is an immediate consequence of the proof of the normal form theorem, since in case
Im(T ) ⊆ Im(L0) no extensions of the differential operators to larger function spaces involving log-
arithms are needed. As the local exponents are integral, the assertion follows from the description
of the solutions. □

Gevrey series. By a theorem of Maillet, every power series solution y(x) of an equation Ly = 0
with holomorphic coefficients is a Gevrey-series, i.e., there exists an m ∈ N such that the m-th
Borel transform

y(x) =

∞∑
k=0

akx
k 7→ ỹ(x) =

∞∑
k=0

ak
(k!)m

xk
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of y(x) converges [Mai03]. This result can also be seen as a consequence of the normal form
theorem: It suffices to apply the norm estimates in part (ii) of the convergence proof to the series

h̃(x) =
∑∞

k=0
ak

(k!)mxk with m = n− n′, where n′ denotes again the order of the initial form L0 of

L at 0. Exploiting this one proves that the composition of the automorphism v = u−1 of Ô with
the m-th Borel transform sends the solutions xρ of L0y = 0, for ρ ∈ Z a local integer exponent of
L, to a convergent power series xρh̃(x). The key step is to see that the ratio

(ρ+ k)j

χL(ρ+ k + i− j)
=

(ρ+ k)j∑n
ℓ=0 cℓ,ℓ(ρ+ k + i− j)ℓ

will be replaced by

(ρ+ k)j

χL(ρ+ k + i− j)
=

(ρ+ k)j∑n′

ℓ=0 cℓ,ℓ(ρ+ k + i− j)ℓ(k!)m

to obtain the required convergence. We omit the details. □

3 Differential equations in positive characteristic

3.1 The lack of primitives in characteristic p

From now on let k be a field of characteristic p > 0. If we try to transfer the description of a basis
of solutions of differential equations over C to fields of characteristic p, substantial obstructions
occur, as the following example shows.

Example 3.1. (i) Let n ∈ N and let, for Si,j the Stirling numbers,

L = δn = (x∂)n = xn∂n + Sn,n−1x
n−1∂n−1 + Sn,2x

n−2∂n−2 + . . .+ Sn,1x∂ + Sn,0.

If we interpret L as a differential operator in C[[x]][∂] and solve the equation Ly = 0 in C((x))[z],
we obtain a full basis of solutions {1, z, . . . , zn−1} over C. In characteristic p the field of constants
clearly contains k((xp))[zp]. So for n > p the set {1, z, . . . , zn−1} cannot be a full basis of solutions,
as 1 and zp are linearly dependent over the field of constants. In some sense this boils down to
the fact that a primitive of zp−1 cannot be expressed in terms of zp, in fact, zp−1 does not have a
primitive in k((x))[z] at all.

(ii) Consider the Euler operator
L = x2∂2 + x∂ + 2.

Solving Ly = 0 in characteristic 0 we notice that the local exponents are given by
√
2 and −

√
2

and a basis of solutions is given by the “functions” x−
√
2 and x

√
2, which are defined in sectors

without a branch cut of the logarithm around 0. In F7((x)) the monomials x3 and x4 are solutions
of the equation. However, in F5 no square root of 2 exists and thus it is impossible to solve the
Euler equation Ly = 0 in F5((x))[z].

In order to resolve this issue in positive characteristic, we will construct in the next section a
differential extension of k((x))(z) which will contain a full basis of solutions for any linear differential
operator with regular singularity at 0. Regularity is again needed to ensure the existence of as many
local exponents as the order of the differential equation indicates. The extension will overcome the
two aforementioned difficulties: the lack of primitives of certain elements and the lack of solutions
to Euler equations.
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3.2 The Euler-primitive closure R of k((x))

For each ρ ∈ k let tρ be a symbol. It will play the role of the monomial xρ from before; if ρ lies in
the prime field of k we may substitute x for t to recover the classical setting. We will call ρ the
exponent of t in tρ. Further, let

R =
⊕
ρ∈k

tρk(z1, z2, . . .)((x))

be the direct sum of Laurent series in x with coefficients in the field of rational functions over k
in countably many variables zi, multiplied with the monomials tρ. We will simply write k(z) and
k(zp) instead of k(z1, z2, . . .) and k(zp1 , z

p
2 , . . .).

We consider R as a ring with respect to the obvious addition and the multiplication given by

(tρf) · (tσg) = tρ+σ(f · g)
for ρ, σ ∈ k, f, g ∈ k[z][[x]]. In other words, we form the group algebra of the additive group of k
over k(z)((x)). We will write t0 = 1 and accordingly have (tρ)p = tρp = 1 and Rp = k(zp)((xp)).

Equip R with the derivation ∂ = ∂R satisfying:

∂x = 1,

∂t = t
1

x
,

∂tρ = ρtρ
1

x
,

∂z1 =
1

x
, ∂z2 =

1

x

1

z1
, ∂zk =

1

x

1

z1 · · · zk−1
=

∂zk−1

zk−1
, k ≥ 1.

This turns R into a differential ring.

The action of ∂ on zi is chosen to mimic the usual derivation of the i-fold composition log(. . . (log(x)) . . .)

of the complex logarithm with itself.Indeed we have, writing log[i] for the i-fold repetition of the
logarithm (

log[i](x)
)′

=
1

x · log(x) · log(log(x)) · · · log[i−1](x)
.

Similar constructions with iterated logarithms in positive characteristic were already considered
by Dwork [Dwo90], p. 752.

Remark 3.2. (i) The ring R is not an integral domain. Indeed, (1+t+. . .+tp−1)(1−t) = 1−tp = 0.
Thus we are not able to form its quotient field and use the machinery of differential fields, as
e.g. Wronski’s Lemma and the concept of a basis of solutions. Still, in the course of the next
sections, we will be able to provide a precise description of the solutions of a differential equation
Ly = 0 in R.

(ii) The derivation ∂ leaves the summands of the direct sumR invariant, i.e., one has ∂ (tρk(z)((x))) ⊆
tρk(z)((x)). This is the reason for not simply defining ∂tρ = ρtρ−1 but rather ∂tρ = ρtρ 1

x .

(iii) Note that the elements of R may have unbounded degree in each of the variables zi, only the
coefficient of a given power of x has finite degree. This differs from the situation in characteristic
0 where the exponent of the logarithm in a solution of the equation Ly = 0 is bounded for each
differential operator.

(iv) The doubly iterated logarithm log(log(x)) of characteristic 0 does not satisfy any homogeneous
linear differential equation with holomorphic coefficients, but only the non-linear equation

xy′′ + y′ + x(y′)2 = 0.

Alternatively, it satisfies the inhomogeneous equation

x log(x)y′ = 1
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in which the logarithm appears as a coefficient. In characteristic p this reads as

xz1z
′
2 = 1.

For elements of R the exponents of x are integers, while the exponents of t are elements of the
field k (formally, tρ for ρ ∈ k is just a symbol). However, we will see that the exponents of x and t
interact in a certain way. We will use the following convention: In case that ρ is in the prime field
Fp of k, we may write xρZ for xρ where ρZ ∈ {0, 1, . . . , p− 1} is a representative of ρ. Conversely
we may write tkk for tk for some k ∈ Z, where kk ∈ Fp ⊆ k is the reduction of k modulo p.

Before we proceed, we will determine the constants of R. Denote by k(zp) the subfield k(zp1 , z
p
2 , . . .)

of k(z). A simple computation shows that monomials of the form tρzpi x
mp−ρ, for any ρ in the prime

field Fp of k and any m ∈ Z, are annihilated by ∂. And, actually, these monomials already yield
the entire field of constants, namely,

Proposition 3.3. The ring of constants of (R, ∂) is

C :=
⊕
ρ∈Fp

tρxp−ρk(zp)((xp)),

where Fp denotes the prime field of k. Moreover, C is a field.

Proof. Let f ∈⊕ρ∈k t
ρk(z)((x)) and assume that

∂f = 0.

Taking derivatives in R preserves the summands of the direct sum, so it suffices to find constants
of the form tρh for some ρ ∈ k and h ∈ k(z)((x)).

Fix some ρ ∈ k. As for all k ∈ Z the derivation ∂ maps tρk(z)xk into tρk(z)xk−1 by definition,
it further suffices to find constants of the form tρhxk, where h ∈ k(z). Therefore we are reduced
to search for elements tρhxk of R with ∂(tρhxk) = 0. Write h = g1/g2 for g1, g2 ∈ k[z]. Then
∂(tρhxk) = 0 is equivalent to ∂(tρg1g

p−1
2 xk) = 0, as gp2 is a constant. So without loss of generality

we may assume that h ∈ k[z] is a polynomial. We expand:

0 = ∂(tρhxk) = tρ((∂h)x+ (k + ρ)h)xk−1. (1)

Let l be minimal such that h ∈ k[z1, . . . , zl]. Consider one monomial zα = zα1
1 · · · zαl

l of h, whose
exponent α is maximal among the monomials of h with respect to the component-wise ordering
of Nl. Taking the derivative ∂ of a monomial in z decreases the exponents of at least one of the
zi and does not increase the other. It therefore yields a sum of smaller monomials with respect to
the chosen ordering.

Thus, in x∂h the coefficient of zα vanishes by the maximality of the exponent. If we compare
coefficients of tρxk−1zα in Equation (1) we get k+ ρ = 0. So it follows that ρ ∈ Fp and that k ≡ ρ
mod p. Moreover, we see from Equation (1) that ∂h = 0. This is clearly equivalent to h ∈ k[zp].
Together with the reductions from above this proves that the ring of constants of R is indeed⊕

ρ∈Fp

tρxp−ρk(zp)((xp)).

Finally, we show that C is a field. Let

f =
∑
ρ∈Fp

tρxp−ρfρ ∈ C,

where fρ ∈ k(zp)((xp)). Then we have

fp =
∑
ρ∈Fp

tpρxp2−pρfp
ρ =

∑
ρ∈Fp

xp2−pρfp
ρ ∈ k(zp)((xp)),
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where fp
ρ ∈ k(zp2

)((xp2

)). The element fp vanishes precisely if fρ vanishes for all ρ ∈ Fp, as the
exponents of x in each of the summands are from a different residue class modulo p2. Thus, fp is
a unit for all f ̸= 0 and we see that (fp−1)(fp)−1 is an inverse to f . □

Example 3.1 (cont.) Let us come back to Example 3.1 (i) with k = p + 1 and the operator
L = (x∂)p+1 ∈ k[x][∂]. In R we have

(x∂)p+1(zp1z2) = 0.

So we have found another solution to the equation Ly = 0. This completes a basis of a p + 1−
dimensional vector space of solutions over the constants of R, namely {1, z11 , z21 , . . . , zp−1

1 , zp1z2},
as those elements are C-linearly independent.

For the Euler operator L = x2∂2+x∂+2 ∈ F5[x][∂] from Example 3.1 (ii) we can also find a basis
of solutions inR over C. It is given by the monomials tω and t−ω, where ω ∈ F25 is a square root of 2.

From what we have seen it is reasonable to call R the Euler-primitive closure of k((x)).

3.3 Extensions of Euler operators to the ring R

Our goal now is to prove that Euler operators admit “enough” solutions in R =
⊕

ρ∈k t
ρk(z)((x))

and then to compute these solutions. For this we first investigate how Euler operators act on
monomials tρzαxk, see Lemma 3.6. For a multi-index α ∈ Z(N) = {(αi)i∈N | αi = 0 for almost all i}
we write zα for zα1

1 · · · zαn
n , if αj = 0 for j > n. We define a partial ordering on Z(N) by β ≺e α if

e(β) := β1 + pβ2 + p2β3 + . . . < α1 + pα2 + p2α3 + . . . =: e(α),

where βi, αi ∈ {0, 1, . . . , p− 1} are chosen such that βi ≡ βi mod p respectively αi ≡ αi mod p.

In other words ≺e is induced by the inverse lexicographic ordering on F(N)
p via the element-wise

reduction modulo p of elements of Z(N).

We also write zβ ≺e z
α if β ≺e α.

Lemma 3.4. Let α ∈ Z(N). Then (x∂)zα is a sum of monomials that are smaller than zα with
respect to ≺e and there is exactly one summand zγ with e(γ) = e(α)− 1. In particular, e(α) is the
minimal number j such that (x∂)j(zα) = 0.

Proof. Let α = (α1, α2, . . .). We compute:

∂zα =
1

x

t∑
i=1

αi z
α1−1
1 zα2−1

2 · · · zαi−1
i z

αi+1

i+1 · · · zαt
t︸ ︷︷ ︸

=:zγ(i)

.

If αi ̸≡ 0 mod p, then clearly γ(i) ≺e α, otherwise its coefficient in (x∂)zα vanishes. A fast
computation shows that if j is the least index, such that αj ̸= 0, then e(γ(j)) = e(α)−1. Moreover,
e(γ(j)) < e(α) − 1 for all other j. This proves in particular that e(α) is the minimal number j
such that (x∂)jzα = 0. □

Let s be a variable and k ∈ N. We define the j-th Hasse derivative or divided derivative of sk

by (sk)[j] =
(
k
j

)
sk−j ; extend it linearly to k[s] [Jeo11]. We will apply it below to the indicial

polynomial χL of an operator L, viewed as a polynomial in the variable s. The next three lemmata
are, as in the case of characteristic zero, inspired by Frobenius’ “differentiation with respect to
local exponents” [Fro73]. See Lemmata 2.6 and 2.7 for the corresponding results in characteristic
zero.
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Lemma 3.5. Let k, l ∈ N. Then we have

(sk)[l] + (sk)[l+1](s− k) = (sk+1)[l+1].

Lemma 3.6. Let j ∈ N, k ∈ Z, α ∈ Z(N). Then we have

∂j(tsxkzα) = tsxk−j
(
(s+ k)jzα + ((s+ k)j)[1]x∂zα + . . .+ ((s+ k)j)[j](x∂)jzα

)
.

Proof. The proof uses induction on j. For j = 0 the claim is obvious. Assume now the formula
holds for some j ≥ 0. Applying ∂ yields

∂j+1(tsxkzα) = ∂
(
tsxk−j

(
(s+ k)jzα + ((s+ k)j)[1]x1∂zα + . . .+ ((s+ i)j)[j](x∂)jzα

))
= tsxk−j−1(s+ k − j)

(
(s+ k)jzα + ((s+ k)j)[1]x∂zα + . . .+ ((s+ k)j)[j](x∂)jzα

)
+

+ tsxk−j
(
(s+ k)j∂zα + ((s+ k)j)[1]∂(x∂)zα + . . .+ ((s+ k)j)[j]∂(x∂)jzα

)
= tsxk−j−1

(
(s+ k − j)(s+ k)j +

(
(s+ k − j)((s+ k)j)[1] + (s+ k)j

)
x∂zα + . . .

)
= tsxk−j−1

(
(s+ k)j+1zα + ((s+ k)j+1)[1]x∂zα + . . .+ ((s+ k)j+1)[j+1](x∂)j+1zα

)
,

where we have used the previous lemma in the last step. □

From this we get:

Lemma 3.7. Let L be an Euler operator of order n with indicial polynomial χL. Then for any
α ∈ Z(N), k ∈ Z and ρ ∈ k we have

L(tρxkzα) = tρxk
(
χL(ρ+ k)zα + χ′

L(ρ+ k)x∂(zα) + . . .+ χ
[n]
L (ρ+ k)(x∂)n(zα)

)
. (2)

For a field K of characteristic 0 a polynomial q ∈ K[s] has a j-fold root at β ∈ K if and only if
the first j − 1 derivatives of q vanish in β, but the j-th derivative does not. This very statement
is false in characteristic p, but if one replaces derivatives with Hasse derivatives it holds true.

Lemma 3.8. Let q ∈ k[s] be a polynomial. Then a is an j-fold root of q if and only if q[i](a) = 0
for i < j, but q[j](a) ̸= 0.

With these results we can finally solve Euler equations in the ring R. We prove that, similar to the
complex case in Lemma 2.8, the solutions form a vector space of dimension n over the constants
C ⊆ R.

Proposition 3.9. Let L be an Euler operator of order n and let Ω := {ρ1, . . . , ρk} be the set of
local exponents of L at 0 with multiplicities mρ1 , . . . ,mρk

. The solutions of Ly = 0 in R form a
C-subspace of dimension n. A basis is given by

yρ,i := tρzi
∗
, ρ ∈ Ω, i < mρ,

where
i∗ = (i, ⌊i/p⌋, ⌊i/p2⌋, ⌊i/p3⌋, . . .) ∈ Z(N).

Before we prove the proposition let us consider an example.

Example 3.10. Consider the differential operator L = x6∂6+x4∂4+x3∂3+x2∂2 ∈ F2[x][∂] with
indicial polynomial χL(s) = (s − 1)5s. As the operator has order 6 one expects 6 solutions of
Ly = 0, independent over C. The proposition asserts that a basis is given by

1, x, xz1, xz
2
1z2, xz

3
1z2, xz

4
1z

2
2z3.

Indeed, one easily verifies that all these monomials are solutions and are C-linearly independent.
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Proof. The operator L is C-linear and maps tρxkk(z) into itself. Therefore it suffices to find
solutions of Ly = 0 of the form tρf(z)xk, where f ∈ k(z). Further we can argue similar as in
Proposition 3.3: we write f = g1/g2 for g1, g2 ∈ k[z]. If tρf(z)xk is a solution, then so is

g2(z)
p
(
tρf(z)xk

)
= tρg1(z)g2(z)

p−1xk,

as gp2 ∈ k[zp] ⊆ C. So we may assume without loss of generality that 0 ̸= f ∈ k[z].

Let zα be the largest monomial of f(z) with respect to the ordering ≺e. By Lemma 3.7 and the
linearity of L we obtain

L(tρf(z)xk) = tρ
(
χL(ρ+ k)f(z) + χ

[1]
L (ρ+ k)(x∂)f(z) + . . .+ χ

[n]
L (ρ+ k)(x∂)nf(z)

)
.

Hence L(tρf(z)xk) vanishes if and only if

χL(ρ+ k)f(z) + χ
[1]
L (ρ+ k)(x∂)f(z) + . . .+ χ

[n]
L (ρ+ k)(x∂)nf(z)

vanishes. We compare the coefficients of monomials in z starting with the largest. All appearing
monomials are smaller than or equal to zα by Lemma 3.4 and for all monomials zγ in the summand
χL(ρ+k)(x∂)j we have e(γ) ≤ e(α)− j. So in order for the sum to vanish, χL(ρ+k) has to vanish
by comparing coefficients of zα. Further, by comparing coefficients of the next smaller monomials,

we obtain χ
[1]
L (ρ + k) = 0 or (x∂)zα = 0, i.e. e(α) = 1. Inductively we obtain that the sum

vanishes, if and only if χ
[ℓ]
L (ρ+k) ̸= 0 implies that e(α) < ℓ. Put differently, by Lemma 3.8, if ρ+k

is a local exponent of L of multiplicity mρ+k, then e(α) < mρ+k. Thus we can give a complete
description of the elements in the kernel of L. They are of the form tρxkzα, where e(α) < mρ+k.

A quick calculation using Lemma 3.4 shows that the last condition is fulfilled for multi-indices,
whose entries differ by multiples of p from i∗ for i = 0, . . . ,mρ+k − 1. This shows on the one
hand that the elements yρ,i are indeed solutions of Ly = 0. On the other hand, the elements yρ,i
are chosen such that ρ ranges over all local exponent of L exactly once. For ρ + k to be a local
exponent, i.e., a zero of χL, we may add multiples of p to k, or subtract an element of the prime
field from ρ and add it to k. Those transformations can be realized by multiplying a solution
tρxkf(z) by an element from C. So indeed, all solutions of Ly = 0 are linear combinations of the
elements yρ,i; that is they generate the C-vector space of solutions.

Assume now that a C-linear relation between the solutions yρ,i exists. Let

D :=
⊕
ρ∈Fp

tρxp−ρk[zp][[xp]].

As C = QuotD, it suffices to consider a relation with coefficients in D. Let Ω =
⊔

j Ωj be the set
of all local exponents, where two local exponents ρ, σ are in the same subset Ωj if and only if their
difference is in the prime field. Assume that∑

j

∑
ρ∈Ωj

i<mρ

yρ,i · dρ,i = 0

for some dρ,i ∈ D. As the exponents of t of elements of D are in the prime field of k, it follows
that for each j the sum ∑

ρ∈Ωj

i<mρ

yρ,i · dρ,i

vanishes. So it suffices to focus on relations between solutions corresponding to local exponents in
the same set set Ωj . Without loss of generality Ωj = Fp, the prime field of k. We consider now a
relation of the form ∑

ρ∈Fp

i<mρ

yρ,i · dρ,i = 0.
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Without loss of generality we may assume that at least one of the constants dρ,i has order 0 in
x and let fρ,i ∈ k[zp] be its constant term. Taking the coefficient of the monomial with smallest
degree with respect to x in the sum above, we obtain a relation of the form∑

ρ∈Fp

i<mρ

tρzαi · fρ,i = 0.

This sum vanishes if and only if the summand for each ρ ∈ Fp vanishes. Furthermore the multi-
exponents i∗ = (i, ⌊i/p⌋, ⌊i/p2⌋, . . .) are defined such that no two of them differ by multiples of p
in every component. Thus fρ,i = 0 for all ρ and i, as required.

Finally, note that
∑

ρ∈Ω mρ = n, as χL is a polynomial of degree n. So the dimension of the space
of solutions is indeed n. □

3.4 The normal form theorem in positive characteristic

We have seen that a basis of solutions of Euler equations is of a very special form. It is not to
be expected that solutions of general differential equations with regular singularities are similarly
simple. In the following let ρ be a fixed local exponent of L at 0 of multiplicity mρ. We define a
function nρ : N → N

nρ(0) = mρ, nρ(k + 1) = nρ(k) +mρ+k+1,

where mρ+j = 0 if ρ+ j is not a root of the indicial polynomial. In other words

nρ(k) = mρ +mρ+1 + . . .+mρ+k.

Note here that if k > p the summand mρ appears at least twice in the sum. Moreover we define
the ρ-function space F = Fρ

L associated to L as

Fρ
L := tρ

∞∑
k=0

⊕
α∈Ak

kzαxk,

where
Ak :=

{
α ∈ N(N)

∣∣∣α1 < nρ(k), αj+1 ≤ αj/p for all j ∈ N
}

is a finite subset of N(N). Note that F only depends on the initial form of the differential operator
L, more precisely, only on the multiplicity of all local exponents of L that differ from ρ by an
element of the prime field of k.

Example 3.11. Consider the differential operator L = x3∂3 + 2x2∂2 + L̃ ∈ F3[[x]][∂], where

L̃ ∈ F3[[x]][∂] has positive shift. The local exponents of L are 0 with multiplicity 2 and 1 with
multiplicity 1. The monomials in F0

L are depicted below in Figure 2.

Lemma 3.12. Let L ∈ k[[x]][∂] be a linear differential operator and let ρ be one of its local
exponents. The space Fρ

L = F is invariant under all differential operators with non-negative shift.
In particular we have LF ⊆ F .

Proof. We can rewrite any differential operator with non-negative shift in terms of the operator δ =
x∂ instead of ∂, where the base change between xn∂n and δn is given by the Stirling numbers, see
Remark 2.1. So we investigate the action of δ on a monomial tρxizα ∈ F , where α = (α1, . . . , αn) ∈
N(N). We compute as in Lemma 3.4

δ(tρxkzα) = x∂(tρxkzα) = tρxk

(k + ρ)zα +

n∑
j=1

αjz
α1−1
1 · · · zαj−1

j z
αj+1

j+1 · · · zαn
n

 .
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Figure 2: The set of exponents (k, α1, α2) of monomials xkzα1
1 zα2

2 in F0
L with k ≤ 6,

exponents of monomials in Ker(L0) in red. They are 1, z1, x, x
3, x3z1, x

3z31 , x
3z41 , x

4, x4z31 ,
x6, x6z1, x

6z31 , x
6z41 , x

6z61 , x
6z71 .

We want to show that all exponents of monomials with non-zero coefficient in the sum above are
in Ak. It is clear that α ∈ Ak by assumption, so it remains to prove that if αj ̸≡ 0 mod p then

(α1 − 1, . . . , αj − 1, αj+1, . . . , αn) ∈ Ak

for j = 1, . . . , n. If αl+1 ≤ αl/p then also αl+1 − 1 ≤ (αl − 1)/p for l < j. It remains to show that
αj+1 > (αj − 1)/p implies αj ≡ 0 mod p. For this we see that from

αj − 1 < pαj+1 ≤ αj

it follows indeed that p divides αj = pαj+1. □

Lemma 3.13 (cf. Lemma 2.13). Let L0 ∈ k[[x]][∂] be an Euler operator with local exponent ρ and
associated ρ-function space F . Then L0(F) = Fx.

Proof. First we show that any monomial in F gets mapped to Fx under L0. Let t
ρxkzα ∈ F . By

Lemma 3.7 we have

L0(t
ρxkzα) = tρxk

(
χL(ρ+ k)zα + χ′

L(ρ+ k)x∂(zα) + . . .+ χ
[n]
L (ρ+ k)(x∂)n(zα)

)
.

By Lemma 3.12 this expression is contained in F . The first mρ+k summands of the sum vanish
due to Lemma 3.8. In the remaining summands x∂ is applied at least mρ+k times to zα, decreasing
the exponent of z1 by at least mρ+k. Thus for each monomial with non-zero coefficient in

χ
[mρ+k]
L (ρ+ k)(x∂)mρ+k(zα) + . . .+ χ

[n]
L (ρ+ k)(x∂)n(zα)

the exponents of z are in Ak−1 and thus L0(t
ρxkzα) ∈ Fx.

Now we show that every monomial of Fx is in the image of F under L0. We proceed by induction
on e(α) = α1 + pα2 + p2α3 + . . . Let tρxk+1zα ∈ Fx; that is α ∈ Ak. Assume that ρ+ k + 1 is an
ℓ-fold root of χL, where ℓ is set equal to 0 if ρ + k + 1 is not a root at all. We define an element
β ∈ Ak+1 such that L0(t

ρxk+1zβ) = tρxk+1zα + r, where r is a sum of smaller monomials with
respect to ≺e. Set

β1 = α1 + ℓ, βj = αj + ⌊βj−1/p⌋ − ⌊αj−1/p⌋.
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As tρxkzα ∈ F , we have α1 < nρ(k) and therefore β1 = α1 + ℓ < nρ(k + 1). Moreover, we know
that αj ≤ ⌊αj−1/p⌋ and therefore also βj = αj + ⌊βj−1/p⌋ − ⌊αj−1/p⌋ ≤ βj−1/p. By construction
we have β1 = α1 + l and thus β1 < nρ(k + 1). Altogether this proves β ∈ Ak+1.

Finally we show that L0(t
ρxk+1zβ) is of the desired form. Again by Lemma 3.7 we have

L0(t
ρxk+1zβ) = tρxk+1

(
χL(ρ+ k + 1)zβ + . . .+ χ

[n]
L (ρ+ k + 1)(x∂)n(zβ)

)
As ρ + k + 1 has multiplicity ℓ as a zero of χL, the first ℓ summands of this expansion vanish,
according to Lemma 3.8. If one expands the further summands using the Leibniz rule one gets a
sum of monomials of the form cγt

ρxk+1zγ , with cγ ∈ k. The exponents γ are in Ak and by Lemma
3.4 we have e(γ) ≤ e(β) − ℓ = e(α). Only one of these summands fulfils e(γ) = e(α). It is of the
form cαt

ρxk+1zα by construction. Now by the induction hypothesis, all other summands are in
the image of F under L0; they are in Fx because of Lemma 3.12. Thus, tρxk+1zα ∈ L0(F), which
concludes the proof. □

Remark 3.14. The proof of the surjectivity of L0 is constructive: For each monomial tρxkzα in Fx
one constructs a monomial tρxkzβ in F , such that L0(t

ρxkzβ) = ctρxkzα + r, where r is a sum of
smaller monomials. If r = 0 we divide by c and are done. Otherwise we iterate the construction
for all monomials in r and subtract the monomials obtained this way from c−1tρxkzβ . After at
most e(α) steps r = 0 and we have constructed an element of F which is sent to tρxkzα by L0.

Lemma 3.15. The kernel of the restriction of L0 to F = Fρ
L is topologically spanned over k by

monomials of the form tρxkzα, where

α ∈ Ak =
{
α ∈ N(N)

∣∣∣α1 < nρ(k), αj+1 ≤ αj/p for all j ∈ N
}

with e(α) < mρ+k. Consequently, a direct complement H of KerL0|F is topologically spanned by
monomials of the form tρxkzα, where α ∈ Ak with e(α) ≥ mρ+k.

Proof. We have seen that e(α) is the least number k, such that (x∂)kzα = 0. So every monomial
tρxkzα with e(α) < mρ+k is in the kernel of L0 according to Lemma 3.7. Arguing as in the proof
of Proposition 3.9 we see that those elements indeed span kerL0|F . □

Now we are ready to state and prove the normal form theorem.

Theorem 3.16 (Normal form theorem in positive characteristic ). Let k be an algebraically
closed field of characteristic p. Let L ∈ k[[x]][∂] be a differential operator with initial form L0

and shift τ = 0 acting on R =
⊕

ρ∈k t
ρk(z)((x)). Let ρ be a local exponent of L at 0 and

F = tρ
∑∞

k=0

⊕
α∈Ak

kzαxk ⊂ R the associated ρ-function space.

(i) The map L0|H : H → Fx is bijective and the composition of its inverse (L0|H)−1 : Fx → H
composed with the inclusion H ⊆ F defines a C-linear right inverse S : Fx → F of L0.

(ii) Let T = L0 − L : F → Fx. Then the map

u = IdF − S ◦ T : F → F

is a continuous C-linear automorphism of F with inverse v =
∑∞

k=0(S ◦ T )k : F → F .

(iii) The automorphism v of F transforms L into L0, i.e.,

L ◦ v = L0.
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Proof. For (i) note that by Proposition 3.13 the map L0 : F → Fx is surjective and thus the
restriction to a direct complement of its kernel is bijective. Clearly S then defines a right inverse
of L0. One easily checks that the construction of preimages of L0 mentioned in Remark 3.14 is
C-linear.
The assertions (ii) and (iii) are an application of the Perturbation Lemma 2.14. We view elements
of F as power series in x and equip F with the x-adic topology, which turns it into a complete
metric space. The operator T has positive shift by definition and thus increases the order in x of
a monomial tρxkzα and thus of any element of F . The operator S maintains the order in x of a
monomial as L0 does so. So the composition S◦T increases the order of any element. Furthermore,
T maps F to Fx = Im(L0). So we may apply the perturbation lemma and the claim follows. □

3.5 Solutions of regular singular equations

The normal form theorem allows us to describe all solutions of differential equations with regular
singularities.

Theorem 3.17. Let L ∈ k[[x]][∂] be a linear differential operator with regular singularity at 0
acting on R. Let ρ ∈ k be a local exponent of L. Denote by uρ : Fρ

L → Fρ
L the automorphism

associated to ρ given in (ii) of the normal form theorem. The solutions of the differential equation
Ly = 0 in R form an n-dimensional C-vector space. A basis is given by

yρ,i = u−1
ρ (tρzi

∗
),

where ρ varies over the local exponents of L at 0 and 0 ≤ i < mρ, with i∗ = (i, ⌊i/p⌋, ⌊i/p2⌋, . . .).

Proof. By the normal form theorem and the description of the solutions of Euler equations (Propo-
sition 3.9), we have

L(yρ,i) = L ◦ u−1
ρ (tρzi

∗
) = L0(t

ρzi
∗
) = 0,

so these functions clearly are solutions of the differential equation Ly = 0. Let now y be any
solution of Ly = 0. Again, as L commutes with the direct sum decomposition of

R =
⊕
ρ∈k

tρk(z)((x))

and upon multiplication with constants of the form xkp we may assume that y is of the form
y = tρ

(∑∞
k=0 fk(z)x

k
)
for fk ∈ k(z). If we write L = L0 − T we obtain

L0y − Ty = 0,

where T has positive shift, i.e., it strictly increases the order in x. Thus, tρf0(z) is a solution to
the Euler equation Ly = 0 and therefore

tρf0(z) =
∑
(σ,i)

cσ,it
σzαi ,

where σ varies over the local exponents, 0 ≤ i < mσ, and cσ,i ∈ C is homogeneous of order 0 in x.
We compute

L

y −
∑
(σ,i)

cσ,iyρ,i

 = L

−
∑
(σ,i)

cσ,iu
−1
σ (tσzαi)

 = −
∑
(σ,i)

cσ,iL(u
−1
σ (tρzi

∗
)) = 0.

Note that for all f ∈ F we have ordx(f − u(f)) > ordxf , i.e., the monomial of order 0 remains
unchanged under u. So y − ∑(σ,i) cσ,iyσ,i has positive order in x. Iteration yields constants

dσ,i ∈ C with y =
∑

(σ,i) dσ,iyσ,i. Thus, y is a linear combination of yσ,i. Conversely, any such
linear combination is a solution of Ly = 0.
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The linear independence of the solutions yρ,i can be reduced to the linear independence of the
solutions of the Euler equation, which was proven in Proposition 3.9.

This proves that the solutions of Ly = 0 in R form an n-dimensional C-vector space with basis
yρ,i, where ρ varies over the local exponents and 0 ≤ i < mρ. □

Remark 3.18. We have assumed for convenience that our field k is algebraically closed. If this is
not the case, e.g., in the case of a finite field Fp, there is no need to pass to the entire algebraic
closure. In the constructions involved in the normal form theorem for an operator L one has to
find the roots of the characteristic polynomial χL ∈ k[s], the local exponents ρ. Further we have
to evaluate the characteristic polynomial at the values ρ+ k for elements k of the prime field of k.
Thus, if χL splits over k the normal form theorem works without problems within k. Otherwise it
is sufficient to pass to a splitting field of χL to describe a full basis of solutions.

Remark 3.19. (i) The space R provides us with n linearly independent solutions for any operator
with a regular singularity at 0 in characteristic p. It is minimal in the following sense: we only
introduce a new variable zi whenever the algorithm constructing solutions forces us to do so, i.e.,
when we have to divide by p. It is possible to choose a system of representatives Λ ⊆ k of the set
k/Fp of residue classes and to then define

R̃ :=
⊕
ρ∈Λ

tρk(z)((x)).

It suffices to construct solutions in R̃ of any linear differential equation Ly = 0 having a regular
singularity at 0, similarly as above. For example, if σ ∈ k is a local exponent of an Euler operator
and there is ρ ∈ Λ with ρ + k = σ for some σ ∈ Fp and k ∈ Fp, then tρxk is a solution of the
equation Ly = 0. This construction has the advantage that the constants are much simpler, as
they are given by the elements of

CR̃ = k(zp)((xp)).

However, this procedure requires a choice of a system of representatives of k/Fp.

(ii) In characteristic 0 a minimal extension of k((x)) in which every regular singular equation has
a full basis of solutions is the universal Picard-Vessiot ring or field for differential equations with
regular singularities, discussed in [SP03].

4 Examples and applications in characteristic p

4.1 Examples

Example 4.1 (Exponential function in characteristic 3). We consider the equation y′ = y. Solving
over the holomorphic functions, or in C[[x]] one obtains the exponential function as a solution.
However there is no reduction of this function modulo any prime, as all prime numbers appear
in the denominators of the expansion of the exponential function. But one can obtain solutions
modulo p for any prime in R using the normal form theorem. Pick for example p = 3. Write
L = x∂ − x = δ − x, so our equation is equivalent to Ly = 0. The only local exponent of the
equation is 0, thus one needs to compute the series

∞∑
n=0

(S ◦ T )n(1).
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The operator T is simply given by the multiplication by x, where S is, as constructed above, a
right-inverse of L0 = x∂. One obtains:

(S ◦ T )1(1) = S(x) = x,

(S ◦ T )2(1) = S(x2) = 2x2,

(S ◦ T )3(1) = S(2x3) = 2x3z1,

(S ◦ T )4(1) = S(2x4z1) = 2x4z1 + x4,

(S ◦ T )5(1) = S(2x5z1 + x5) = x5z1,

(S ◦ T )6(1) = S(x6z1) = 2x6z21 ,

(S ◦ T )7(1) = S(2x7z21) = 2x7z21 + 2x7z1 + x7,

(S ◦ T )8(1) = S(2x8z21 + 2x8z1 + x8) = x8z21 + 2x8,

(S ◦ T )9(1) = S(x9z21 + 2x9) = x9z31z2 + 2x9z1.

One gets the solution

1+x+2x2+2x3z1+x4(1+2z1)+x5z1+2x6z21+x7(1+2z1+2z21)+x8(2+z21)+x9(2z1+z31z2)+ . . . ,

which could be considered as the exponential function in characteristic 3. Note that obtaining
the rightmost column needs some computational effort. One has to follow the steps described in
Remark 3.14. There seems to be no obvious pattern in the coefficients of the obtained power series.

Similarly, one can compute the exponential functions expp for other characteristics p. For p = 2
the first terms are

1+x+x2z1+x3(z1+1)+x4(z21z2+z1)+x5z21z2+x6(z31z2+z31)+x7(z31z2+z21z2+z31 +z1+1)+ . . .

and for p = 5 we get

1 + x+ 3x2 + x3 + 4x4 + 4x5z1 + x6(4z1 + 1) + x7(2z1 + 2) + x8(4z1 + 1) + x9z1 + 3x10z21 + . . .

The series expp seems to have some remarkable properties. Let us considers the constant term in
z, i.e. expp(x, 0, 0, . . .). Computations suggest that y = exp3(x, 0, 0, . . .) satisfies

x3y3 + xy2 − y + 1 = 0

and y = exp5(x, 0, 0, . . .) satisfies

x10y5 + x6y4 + x4y3 − x3y3 + 2x2y2 + 2xy2 − 2y + 2 = 0,

i.e. these series seem to be algebraic over Fp(x). Similar observations were made for other charac-
teristics as well. This motivates the following challenge:

Problem 4.2. Let L ∈ Fp[x][∂] be a differential operator and ρ ∈ Fp a local exponent of L. Let
u be the automorphism described in the normal form theorem in positive characteristic, Theorem
3.16. Determine the cases where (u−1(xρ))|zi=0 is algebraic over Fp(x).

In the next example, the answer is immediate.

Example 4.3. We consider the minimal complex differential equation Ly = 0 for

y(x) = − log(1− x) = x+
x2

2
+

x3

3
+ . . . ∈ C[[x]].

It is given by L = x2∂2 − (x2∂ + x3∂3). The local exponents are 0, 1 and a basis of solutions in
C[[x]] is given by {1, y}. Reducing L modulo a prime number p one again finds the local exponents
0, 1. Clearly y0,0 = u−1

0 (1) = 1. Further we compute

y1,0 = u−1
1 (t1) =

∞∑
k=0

(S ◦ T )(t1) = t

(
1 +

x

2
+

x2

3
+ . . .+

xp−2

p− 1
+ xp−1z1

)
.
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Here only adjoining the variable z1 instead of countably many zi is necessary to obtain enough
solutions. In the next section we will describe the class of operators, where the addition of finitely
many of the variables zi suffice.

4.2 Special cases

Equations with local exponents in the prime field. The situation becomes much easier if
we consider a linear differential equation Ly = 0, whose local exponents are all contained in the
prime field Fp ⊆ k. In this case there is no need to introduce monomials tρ with exponents ρ ∈ k.
We define the differential subfield K of R as

K := k(z)((x)).

One easily checks that K is indeed differentially closed with respect to ∂R. Moreover, its field of
constants is given by

CK = k(zp)((xp)).

The assumption on the local exponents allows one to modify the normal form theorem to use the
function space

Gρ := xρ
∞∑
k=0

⊕
α∈Ak

kzαxk,

instead of

Fρ = tρ
∞∑
k=0

⊕
α∈Ak

kzαxk,

by “substituting t = x” and analogously one obtains a full basis of solutions over CK in K: For each
local exponent ρ one computes u−1(xρ) instead of u−1(tρ), where u is the automorphism described
in the normal form theorem.

Polynomial solutions. It is well-known that if a Laurent series solution y ∈ Fp((x)) to Ly = 0 for
an operator L ∈ Fp[x][∂] with polynomial coefficients exists, then there already exists a polynomial
solution to the equation, see [Hon81] p. 174. We generalize the result to solutions involving only
finitely many of the variables zi.

Lemma 4.4. Let k be a field of characteristic p. Let L ∈ k[x][∂] be a differential operator with local
exponent ρ ∈ k. Let y ∈ tρk[z1, . . . , zℓ][[x]] be a solution of the differential equation Ly = 0 involving
only finitely many of the variables zi. Let c ∈ N. Then there exists a polynomial q ∈ k[x, z1, . . . , zℓ],
such that L(tρq) = 0 and y − tρq ∈ tρxc+1k[z1, . . . , zℓ][[x]]. In particular, if a basis of power series
solutions of Ly = 0 in

⊕
ρ t

ρk[z1, . . . , zℓ][[x]] exists, then there already exists a basis of polynomial
solutions in

⊕
ρ t

ρk[z1, . . . , zℓ, x].

The proof of Honda can be easily adapted to this generalisation. However, we give a more concep-
tual proof.

Proof. We consider tρk[z1, . . . , zℓ][[x]] as a free k[zp1 , . . . , z
p
ℓ ][[x

p]]-module of rank pℓ+1 with basis
G = {tρxkzα|k ∈ {0, 1, . . . , p − 1}, α ∈ {0, 1, . . . , p − 1}ℓ}. Without loss of generality assume that
ρ = 0. We can write

y(x) =
∑
g∈G

yg(z
p
1 , . . . , z

p
ℓ , x

p)g

with series yg ∈ k[z1, . . . , zℓ][[x]]. Then

Ly =
∑
g∈G

yg(z
p
1 , . . . , z

p
ℓ , x

p)L(g) = 0

implies that the series yg(z
p
1 , . . . , z

p
ℓ , x

p) form a k[zp1 , . . . , z
p
ℓ ][[x

p]]-linear relation between the poly-
nomials L(g) in the finite free k[zp1 , . . . , z

p
ℓ , x

p]-module k[z1, . . . , zℓ, x] for g ∈ G. By the flatness
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of k[zp1 , . . . , z
p
ℓ ][[x

p]] over k[zp1 , . . . , z
p
ℓ , x

p] there are polynomials qg(z
p
1 , . . . , z

p
ℓ , x

p) ∈ k[zp1 , . . . , z
p
ℓ , x

p]
approximating yg(z

p
1 , . . . , z

p
ℓ , x

p) up to any prescribed degree and such that∑
g∈G

qg(z
p
1 , . . . , z

p
ℓ , x

p)L(g) = 0.

Now set
q(z1, . . . , zℓ, x) =

∑
g∈G

qg(z
p
1 , . . . , z

p
ℓ , x

p)g

to get the required polynomial solution of Ly = 0. □

Remark 4.5. (i) Assume that L ∈ k[x][∂], where k is a finite field of characteristic p with algebraic
closure k. Then if y ∈ tρk[[x]] is a solution obtained by the normal form theorem, we already
have y ∈ tρk(ρ)[[x]], where k(ρ) is a finite extension of k. Recall the operators S and T from the
normal form theorem: S is a right inverse to L0 and T = L−L0. It holds S(x

ρ+k+p) = xpS(xρ+k)
and T (xρ+k+p) = xpT (xρ+k). There are only finitely many n-tuples of elements from k(ρ). Write
y = tρ(a0 + a1 + a2x

2 + . . .). Two n-tuples of consecutive coefficients ai of y, starting at powers
of an index divisible by p, have to agree. Thus the sequence (ai)i∈N becomes periodic. Hence it
suffices to take a suitable sufficiently large k to obtain a polynomial solution (1− xkp)y of Ly = 0,
which approximates y to a prescribed degree c.

(ii) The algorithm from the normal form theorem may but need not provide us with a polynomial
solution of Ly = 0, when applied to an operator L in Fp[x][∂]. To see this consider the following
two examples:

(a) Let L = x∂ − x2∂ − x and

yL(x) =
1

1− x
the solution of the equation Ly = 0. Over Fp we compute using the algorithm from the normal
form theorem with L0 = x∂ and T = x2∂+x and obtain u−1(1) =

∑∞
k=0(SL ◦TL)

k = 1+x+x2+
. . .+ xp−1 ∈ Fp[x], a polynomial solution.

So we obtain u−1(1) =
∑∞

k=0(SL ◦ TL)
k = 1 + x+ x2 + . . .+ xp−1 ∈ Fp[x], a polynomial solution.

(b) Let now M = (−x− 2x4) + (x+ x2 +−2x4 − x5 + x7)∂. The equation My = 0 is satisfied by
the algebraic function 1 + x

1−x3 . Reducing modulo 3 we get

T = (x+ 2x2∂) + (2x4∂) + (2x4 + x5∂) + (2x7∂) = T1 + T3 + T4 + T6

and the initial form M0 = x∂. We compute the solution

u−1(1) =

∞∑
i=0

aix
i

∞∑
i=0

(S ◦ T )i(1) = 1 + x+ x4 + x7 + x10 + . . .

Because the maximal shift of T is 6 and (a1, a2, a3, a4, a5, a6) = (a4, a5, a6, a7, a8, a9) the sequence
of coefficients of this series becomes periodic, as described in (i), with period length 3. Thus, the
solution obtained by the normal form theorem in characteristic p agrees with the reduction modulo
p of the solution obtained in characteristic 0.

(iii) The latter of the two examples from above illustrates that the degree of a minimal degree
polynomial solution of a differential equation in characteristic p need not be p − 1, as one could
expect. Indeed using the periodicity of the coefficients of the solution from above one obtains that

ŷ(x) = u−1(1)− x3u−1(1) = 1 + x− x3

is a polynomial solution. Any other polynomial solution has to be a multiple of ŷ with a constant.
Indeed, making the ansatz

(1 + x− x3) · (1 + c1x
3 + c2x

6 + · · · ) = 1 + ax+ bx2

one immediately obtains c1 = 1, which leads to a contradiction. Therefore no polynomial solution
of degree less than 3 exists.
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The p-curvature. Let L be a differential operator. We define the p-curvature of L to be the
action of multiplication by ∂p on the space k[x][∂]/k[x][∂]L.

Operators with nilpotent p-curavture. One class of operators with all local exponents in the
prime field of k turn out to be operators with nilpotent p-curvature. An alternative description
of these operators was provided by Honda [Hon81] p. 176: We say that an equation Ly = 0 of
order n has sufficiently many solutions in the weak sense if Ly = 0 has one solution y1 ∈ k[[x]]
and recursively the equation in u′ of order n− 1 obtained from Ly = 0 by the ansatz y = y1u has
sufficiently many solutions in the weak sense.

Theorem 4.6 (Honda, [Hon81], p. 201). A linear differential operator L ∈ k[x][∂] has nilpotent
p-curvature if and only if the equation Ly = 0 has sufficiently many solutions in the weak sense.

Indeed, the following theorem holds:

Theorem 4.7. Let L ∈ k[x][∂] be a differential operator with nilpotent p-curvature. Then its local
exponents are in the prime field Fp ⊆ k.

For a proof, see [Hon81] p. 179. Further, there is another interesting characterisation of operators
with nilpotent p-curvature due to Dwork [Dwo90]. They are exactly those operators, for which
finitely many of the variables zi suffice to obtain a full basis of solutions:

Theorem 4.8 (Dwork, [Dwo90], p. 756). An operator L ∈ k[x][∂] has nilpotent p-curvature if and
only if there is l ∈ N such that Ly = 0 has a full basis of solutions in k(z1, . . . , zl)((x)) over its field
of constants k(zp1 , . . . , z

p
l )((x

p)).

This is a generalisation of a result of Honda, who proved the result for l = 1 and operators of order
smaller than p, see [Hon81] p. 186.

For example, the operator annihilating log(1 − x), discussed in Example 4.3, has nilpotent p-
curvature.

Corollary 4.9. Let L ∈ k[x][∂] be an operator with nilpotent p-curvature. Then there is ℓ ∈ N,
such that there is a basis of polynomial solutions of Ly = 0 in k(x, z1, . . . , zℓ).

This immediately follows from Theorem 4.7 and Lemma 4.4.

4.3 The Grothendieck p-curvature conjecture

We now turn to conjectures of Grothendieck-Katz, André, Bézivin, Christol, the Chudnovsky
brothers, Matzat and van der Put about the algebraicity of solutions of linear differential equations
with polynomial coefficients defined over Q [Kat70; Kat72; Kat82; And04; Béz91; Chr90; CC83;
Mat06; Put96]. The goal is to study them using the normal form theorems in characteristic 0 and
p.

It is a classical result, already known to Abel, that algebraic power series satisfy a linear differential
equation with polynomial coefficients. The intriguing and meanwhile notorious problem is to
characterize those differential equations which arise in this way, a question which appears over
and over again in the literature (Abel, Riemann, Autonne, Fuchs, Frobenius, Schwarz, Beukers-
Heckman, ...).

In the previous section we have studied operators with nilpotent p-curvature. We want to study
now operators L with vanishing p-curvature, i.e., L divides ∂p from the right. The vanishing of
the p-curvature of an operator can be described in terms of its solutions:

Lemma 4.10 (Cartier). Let L ∈ k[x][∂] be a differential operator, where k denotes a field of
characteristic p. Then L admits a full basis of solutions over k((xp)) in k[x] if and only if the
p-curvature of L vanishes.
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The original abstract formulation and a proof can be found in [Kat70], a more “down-to-earth”
proof in [SP03]. Compare this result also to Corollary 4.9.

In the following let L ∈ Q[x][∂] be a differential operator defined over Q and denote by Lp ∈ Fp[x][∂]
the differential operator that arises from reducing the coefficients of L modulo p, whenever this is
defined. The reduction Lp is defined for all but finitely many prime numbers p. We are interested
in the interplay between solutions of the equations Ly = 0 and Lpy = 0. Most prominent here is
the Grothendieck p-curvature conjecture.

We now give an elementary formulation of the Grothendieck p-curvature conjecture. In this formu-
lation the p-curvature does not appear, however Cartier’s Lemma 4.10 establishes the connection.

Conjecture 4.11 (Grothendieck p-curvature conjecture, [Hon81]). Let L ∈ Q[x][∂]. Assume that
Lpy = 0 has a basis of Fp[[x

p]]-linearly independent solutions in Fp[[x]] for almost all prime numbers
p. Then there exists a basis of Q-linearly independent algebraic solutions of Ly = 0 in Q[[x]].

Remark 4.12. One can easily generalize this conjecture to number fields, by replacing Q with
K = Q(α), for α an algebraic number, and Fp by the residue fields of OK modulo its prime ideals
p.

The case of order one equations is equivalent to a special case of a theorem of Kronecker (which, in
turn, is a special case of Chebotarev’s density theorem) [Hon81]. Katz has proven the conjecture
for Picard-Fuchs equations [Kat72]. There have been recent and quite technical advances in the
conjecture by various people, but the general case (even for order two equations) seems to still resist.
Bost has established a more general variant of the conjecture for algebraic foliations and subgroups
of Lie-groups [Bos01], [Cha02], Thm. 2.4. Progress was also made by Farb and Kisin[FK09] as well
as Calegari, Dimitrov and Tang [CDT21].

An apparently weaker statement than the Grothendieck conjecture was proposed by Bézivin.

Conjecture 4.13 (Bézivin conjecture, [Béz91]). Let L ∈ Q[x][∂] be a differential operator. Assume
that Ly = 0 has a basis of Q-linearly independent solutions in Z[[x]]. Then these solutions are
algebraic over Q(x).

Lemma 4.14. The validity of the Grothendieck p-curvature conjecture implies the validity of the
Bézivin conjecture.

In other words: The hypothesis of the Bézivin conjecture implies the hypothesis of the Grothendieck
p-curvature conjecture.

Proof. Assume that y ∈ Z[[x]] is an integral solution of Ly = 0. Its reduction modulo all prime
numbers is well-defined and a solution to Lpy = 0. For p larger than the maximal difference of the
local exponents of L, a basis of solutions of Ly = 0 gets mapped by reduction to a basis of solution
modulo p. The condition on p is necessary to ensure that the reductions of the solutions do not
become linearly dependent over Fp((x

p)). Thus by the Grothendieck p-curvature conjecture Ly = 0
has a basis of algebraic solutions and y, as a linear combination of those algebraic solutions, is
algebraic itself. □

A substantial advance towards the Grothendieck p-curvature conjecture would be to prove the
inverse implication of Lemma 4.14: in fact it would transfer the problem from positive characteristic
to characteristic 0. To approach the converse implication, it is reasonable to compare the algorithm
of the normal form theorem in characteristic 0 applied to an operator L to the algorithm of the
normal form theorem in characteristic p, applied to the reduction Lp of the operator L modulo
p. We investigate in the next paragraphs how the normal form theorems could be used to achieve
this.

The problem which arises lies in the observation that the characteristic p algorithm does not
entirely coincide with the reduction modulo p of the algorithm in zero characteristic. Very subtle
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disparities appear, and this makes it hard to deduce properties of the characteristic zero solutions
from the characteristic p solutions, in particular, to prove their algebraicity. One hope is, however,
to be able to compare the Grothendieck-Katz conjecture with the Bézivin conjecture.

We will use the following number theoretic result:

Theorem 4.15 (Kronecker, [Kro80], Frobenius, [Fro96]). Let f ∈ Q[x] be a polynomial of degree
n, let s ∈ N and n1, . . . , ns with n1 + . . . + ns = n. The density of prime numbers p for which
the reduction of f modulo p splits into k factors of degrees f1, . . . , fk is equal to the number of
permutations of the roots of f in the Galois group of f consisting of s cycles of lengths f1, . . . , fs.
In particular, f splits into linear factors over Q[x] if and only if its reduction modulo p splits in
Fp[x] into linear factors for almost all primes p.

This version was proven by Frobenius, while similar results were formulated by Kronecker before.
It is also an easy corollary of the Chebotarev density theorem.

We now describe consequences of the hypothesis of the Grothendieck p-curvature conjecture. They
were already collected by Honda and we refer for parts of the proof to his article. However, for the
last assertion we give a different proof. It compares the two algorithms obtained from the normal
form theorems in characteristics 0 and p.

For an operator L ∈ Q[x][∂] in characteristic 0 and a fixed prime p we denote in the sequel by
L = Lp ∈ Fp[x][∂] the reduction of L modulo p, whenever this reduction is defined.

Proposition 4.16 (Honda). Let L ∈ Q[x][∂] be a differential operator with polynomial coefficients
over Q. Assume that the induced equations Ly = 0 modulo p have an Fp[[x

p]]-basis of power series
solutions in Fp[[x]], for almost all primes p. Then

(a) The operator L has a regular singularity at 0.

(b) The local exponents of L at 0 are pairwise distinct rational numbers ρi ∈ Q.

(c) There exists a Q-basis of Puiseux series solutions y(x) of Ly = 0 in
∑

ρi
xρiQ[[x]], where ρi

ranges over the local exponents of L. In particular, this basis is independent of the variables t
and zi in R =

⊕
ρ∈k t

ρk(z1, z2, . . .)((x)).

Proof. For part (a) use [Hon81], Corollary p. 178, combined with Theorem. 4.6 and Lemma 4.10
from above.

(b) See [Hon81], Thm. 2, p. 179, combined with Thms. 4.7 and 4.15 from above. We provide here
a variant of Honda’s proof. As a consequence of (a) there are n local exponents of L, counted with
multiplicity, n = ordL. Moreover, for almost all primes p, the local exponents of L have to be
elements of the prime field Fp. Indeed for any local exponent ρ ̸∈ Fp we obtain using Theorem
3.17 a solution of the form tρf(x) ∈ tρF[[x]], contradicting the existence of a basis of n solutions of
Ly = 0 in Fp[[x]].

It is then shown as in [Hon81] that the local exponents of L are pairwise incongruent modulo almost
all primes p. The indicial polynomial χL of L has coefficients in Q and its reduction modulo p splits
into linear factors over Fp for almost all primes p. Thus, by Theorem 4.15, χL splits into linear
factors over Q. It follows that all local exponents of L are rational. Assume now that two local
exponents are congruent modulo some p. Then their reduction modulo p is a local exponent of L
of multiplicity at least 2. So, Theorem 3.17 together with the remarks in section 4.2 upon avoiding
the variable t, yield a solution of Ly = 0 of the form u−1(xρz1), where u is the automorphism of
the normal form theorem in positive characteristic, Theorem 3.16. This solution now depends on
z1, contradictory to the assumption. This proves (b).

(c) By Theorem 2.16 a basis of solutions of Ly = 0 lies in∑
ρi

xρiQ[[x]][z],
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the sum varying over all local exponents ρi of L. It remains to prove that these solutions are
independent of z. So assume the contrary: let f be a solution which depends on z. Without loss
of generality we may assume that

f = u−1(xρ) = xρ(1 + a1(z)x+ a2(z)x
2 + . . .)

for some local exponent ρ ∈ Q of L and some ai ∈ Q[z]. Let m ∈ N be the first index where am
depends on z. We will construct from f a solution g of Ly = 0, for a suitable prime p, which
involves z1-terms which are not p-th powers. This will produce the required contradiction.

The construction of g is, in fact, quite subtle. We have to run the two normal form algorithms
for the construction of f and g simultaneously in characteristic 0 and p as long as no z appears in
characteristic 0. At the moment when z occurs for the first time, say, in the computation of the
coefficient am of f , a careful comparison ensures that z1 shows up also in the expansion of g in the
characteristic p algorithm.

We choose the prime p subject to the following conditions:

� p > n = ordL;

� There is a basis of solutions of Ly = 0 in Fp[[x]];

� p does not divide any of the denominators of the local exponents of L;

� p does not divide any of the denominators of the coefficients of a1, . . . , ak.

Let Λ be the set of positive integers ℓ smaller than m such that σ := ρ + ℓ is a local exponent of
L. Here we write σ and ρ for elements in Q as well as for the representatives in {0, 1, . . . , p− 1} of
their reduction modulo p. We define

g = u−1

(
xρ

(
1 +

∑
ℓ∈Λ

aℓx
ℓ

))
= xρ(1 + b1(t, z)x+ b2(t, z)x

2 + . . .),

where u is the automorphism of Gρ = xρ
∑∞

k=0

⊕
α∈Ak

kzαxk from the normal form theorem,
Theorem 3.16, compare again to the remarks on avoiding the variable t in Section 4.2. The
additional summand

∑
ℓ∈Λ aℓx

ℓ in the inner parenthesis of g is required to make f and g coincide
up to degree m− 1.

We will show that g is a solution of Ly = 0 and that its coefficient bm involves z1. The first thing
is easy since, by the normal form theorem 3.16,

L(g) = (L0 ◦ u)(g) = L0

(
xρ

(
1 +

∑
ℓ∈Λ

aℓx
ℓ

))
= 0,

for ρ+ ℓ is a local exponent of L0 and hence L0(x
ρ+ℓ) = 0. This proves Lg = 0.

Next we prove inductively that bℓ = aℓ for ℓ ≤ m − 1, i.e., that the expansion of g up to degree
m− 1 equals the reduction of the respective expansion of f . This part is a bit computational.

Write T = L−L0 and T = L−L0 as earlier for the tails of L and L. We expand T and T as sums
of Euler operators

T = T1 + · · ·+ Tr,

T = T 1 + · · ·+ T r,

Similarly, we define S and S as the inverses S = (L0|H)−1 and S = (L0|H)−1 of L0 and L0,
respectively, on direct complements of their kernels, as described in the normal form theorems,
Theorems 2.15 and 3.16.

We now distinguish two cases.
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(i) Assume first that ρ+ ℓ is not a local exponent of L. Rewriting the differential equations Ly = 0
and Ly = 0 as linear recursions for the coefficients of the prospective solutions we obtain, for
ℓ ≤ m− 1,

aℓ = S

(
r∑

k=1

Tk

(
aℓ−kx

ρ+ℓ−k
))

,

and

bℓ = S

(
r∑

k=1

T k

(
bℓ−kx

ρ+ℓ−k
))

,

where both sums in the parentheses are homogeneous of degree ρ + ℓ in x. By induction on ℓ we
may assume that bℓ−k = aℓ−k equals the reduction of aℓ−k for all k = 1, . . . , r. Hence this also
holds for bℓ = αℓ.

(ii) Assume now that ρ + ℓ is a local exponent of L. Here, the formula for bℓ is different, by the
very definition of g,

bℓ = S

(
r∑

k=1

T k(bℓ−kx
ρ+ℓ−k)

)
+ aℓ.

Now, as ρ + ℓ is a local exponent of L and hence also of L, the image S(xρ+ℓ) will involve z1.
Therefore, as bℓ does not involve z1 by assumption, we get T k(bℓ−kx

ρ+ℓ−k) = 0. Hence again
bℓ = aℓ for all ℓ ≤ m− 1.

This proves in both cases that g is the reduction of f modulo p up to degree m− 1.

To finish the proof we will show that bm involves z1. This will produce the required contradiction.
As am depends on z by assumption, ρ + m is necessarily a local exponent of L and thus of L.
Hence S(xρ+m) will depend on z1. Recall that

am = S

(
r∑

k=1

Tk(am−kx
ρ+m−k)

)
,

and

bm = S

(
r∑

k=1

T k(bm−kx
ρ+m−k)

)
.

From the already established equalities bℓ = aℓ for ℓ ≤ m − 1 it follows that T k(bm−kx
ρ+m−k) is

the reduction modulo p of Tk(am−kx
ρ+m−k). Now, if Tk(am−kx

ρ+m−k) were 0, its image am under
S were zero, which is excluded by the choice of m. So this term is non-zero. But then it suffices
to choose p sufficiently large such that also the reduction T k(bm−kx

ρ+m−k) is non-zero. Similarly
as before we then get that bm involves z1, contradiction. □

We illustrate the crucial step in the proof of (c) by an example.

Example 4.17. The operator L = x2∂2 − 3x∂ − 3x− x2 − x3 has the solution

f(x) = u−1(1) = 1 + a1x+ a2x
2 + . . . = 1− x+

1

2
x2 − 1

2
x3 − 1

2
x4z + . . . ,

so a4 = − 1
2z is the first coefficient which depends on z. Assume that there was a full basis of

solutions in F3[[x]]. The local exponents in characteristic 3 are 0 and 1, so Ω4 = {1, 3}. We
compute, using T = x2 + x3 and L0 = x2∂2, the expansion of the following solution

u−1
3 (1 + 2x+ x3) = 1 + 2x+ 2x2 + x3 + . . . ,

which agrees with the reduction of f up to order 3. However, the next term in the expansion is
S3(x

4) = x4z1, so u−1
3 (1 + 2x+ x3) ̸∈ F3[[x]].
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4.4 Outlook

If one wants to pursue the goal of proving the equivalence of the Grothendieck p-curvature conjec-
ture and the Bézivin conjecture, number theoretic obstacles occur.

A power series y(x) ∈ Q[[x]] is called globally bounded if there is an integer N such that y(Nx) ∈
Z[[x]]. In other words, there are only finitely many prime numbers p appearing in the denominators
of the coefficients of y and they only grow geometrically. A theorem of Eisenstein [Eis52] says that
any algebraic power series is globally bounded.

To prove that the validity of the Bézivin conjecture implies the validity of the Grothendieck p-
curvature conjecture it suffices to show that for a linear differential equation Ly = 0 whose reduction
Lpy = 0 has a full basis of solutions in Fp[[x]] the basis of solutions in characteristic 0 is globally
bounded. For this it is natural to try to compare the algorithms from the normal form theorems
in characteristic 0 and p further. Ideally, p would not appear in the denominators of solutions in
characteristic p if and only if there is a basis of solutions in Fp[[x]] of Lpy = 0, at least for almost
all p. However, the situation is not as easy as one might hope, as the following two examples
illustrate:

Example 4.18. (i) The first example shows that for finitely many primes it may happen that a
full basis of solutions of the reduction of a linear differential equation modulo p exists, although p
appears in the denominator of one of the solutions in characteristic 0. The solution of ∂ − nxn−1

for n ∈ N is ex
n

, a power series where each prime number appears eventually in the denominators.
However, for all prime numbers p dividing n, the reduction of the equation modulo p is an Euler
equation having the solution 1 ∈ Fp[[x]]. As this can happen only for a finite number of primes,
this does not contradict the Grothendieck p-curvature conjecture.

(ii) The next example shows that to rule out the appearance of the prime factor p in the denomina-
tors of a solution of Ly = 0 it is not sufficient to work on the level of individual solutions associated
to a local exponent and its reduction. If possible at all, it has to take into account the existence
of a full basis of solutions.

The power series

y(x) =

∞∑
k=1

akx
k =

∞∑
k=1

k(k + 2)

(k + 1)
xk =

3

2
x+

8

3
x2 +

15

4
x3 +

24

5
x4 + . . . =

log(1− x)

x
+

x

(x− 1)2

is annihilated by the third order operator

L = x3∂3 + 4x2∂2 + x∂ − 1− (x4∂3 + 8x3∂2 + 13x2∂ + 3x).

This operator L is hypergeometric, i.e., T = L−L0 is an Euler operator with shift one. Moreover,
y is annihilated by the second order operator

M = 3x2∂2 + 3x∂ − 3 + (x4 − 4x3)∂2 + (3x− 12x2)∂ + x2 − 4x,

which is not hypergeometric. The operator M is a right divisor of L, as one verifies that(
− 1

x− 3
x∂ − 1

x− 3

)
M = L.

Let us first concern ourselves with the operator L. Its local exponents are −1 with multiplicity
two and 1 with multiplicity 1. We have y = 3

2 · u−1(x), where u is the automorphism described
in the normal form theorem in characteristic 0. Moreover we compute u−1(x−1) = x−1 and
u−1(x−1z) = x−1z. Thus a basis of solutions of Ly = 0 is given by y, x−1 and x−1 log(x).

For all prime numbers p the coefficient of xp−2 in the expansion of y is divisible by p, while the
denominators of a1, . . . , ap−2 are not. Thus

yp :=

p−2∑
k=1

akx
k

37



is well defined in characteristic p and a solution to the equation Lpy = 0. It is given as u−1
p (x)

where up is the automorphism defined in the normal form theorem in characteristic p. The series
y is not algebraic, as it is not globally bounded. In fact any prime number p appears in the
denominators of the coefficients ai. However, the solution in characteristic p corresponding to the
reduction of the local exponent 1 is a genuine power series. Other linearly independent solutions in
characteristic p are x−1 and x−1z1. We see that in neither characteristic there is a basis of power
series solutions.

Let us now turn to the operator M , which has local exponents −1 and 1 as well, both with
multiplicity 1. A basis of solutions is given by x−1 and y. This does not contradict the Grothendieck
p-curvature conjecture, as yp is not a solution of M . For L the construction was very dependent
on the fact that the equation is hypergeometric, which is no longer the case for M .

There still remain several questions about linear differential equations over fields with positive
characteristic. For linear differential equations with holomorphic coefficients there is a criterion by
Fuchs characterizing regular singular points of an operator L [Fuc66]. A point a ∈ P1

C is at most
a regular singularity of L if and only if there is a local basis of solutions of Ly = 0, which grows
at most polynomially when approaching a. One would expect a similar criterion in characteristic
p: an n-dimensional vector space of solutions in R over the constants C should suffice to conclude
that 0 is a regular singular point of L. The needed framework could be provided by adapting
the solution theory of linear differential equations with holomorphic coefficients and an irregular
singularitiy at 0 of N. Merkl, described in section 2.4 to positive characteristic. More precisely, this
should allow the definition of a ring R̃ in which every linear differential equations with an irregular
singularity at 0 in positive characteristic has a basis of solutions. The corresponding criterion in
characteristic p should then read: A linear differential equations Ly = 0 admits a basis of solutions
in R ⊆ R̃ if and only if 0 is a regular singularity of L

Moreover, the solutions of differential equations in R need to be better understood. For exam-
ple one would expect some kind of pattern in the exponential function in positive characteristic
discussed in Example 4.1. However, no such structure seems obvious. Also the question of the
algebraicity of the constant term raised in Example 4.1 and Problem 4.2 deserves some attention
and should be studied for the constant terms of solutions of any equation.

In addition there is hope to extract information about the p-curvature of linear differential operator
L in positive characteristics from the description of a full basis of solutions in the differential
extensionR of k. In [BCS15] Bostan, Caruso and Schost describe an algorithm on how to effectively
compute the p-curvature of a differential operator. They work over the ring k[[x]]dp of series of the
form

f = a0 + a1γ1(x) + a2γ2(x) + . . . .

The elements γi(x) are formal variables, but should be thought of xi

i! . The multiplication on k[[x]]dp

is consequently given by γi(x)γj(x) =
(
i+j
i

)
γi+j(x). In a suitable extension extension of k[[x]]dp,

accounting for local exponents outside the prime field, they construct a basis of solutions of Ly = 0.
From this basis they compute, passing to systems of first order equations, the matrix representation
of the p-curvature. A similar program seems feasible working in R instead of k[[x]]dp.

Finally, there remain, of course, the Grothendieck p-curvature conjecture and the Bézivin conjec-
ture. As Example 4.18 shows, the algorithms of the normal form theorems in characteristic p and
0 show some unexpected discrepancy. The hope that solutions of the reduction of differential oper-
ators are reductions of solutions of the operator seems to be unfounded. However, the phenomena
shown require further investigation.
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[And04] Y. André. “Sur la conjecture des p-courbures de Grothendieck-Katz et un problème de
Dwork”. Geometric Aspects of Dwork Theory. 2004, pp. 55–112.

38
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